【題目】已知.
(1)設(shè), ,若函數(shù)存在零點,求的取值范圍;
(2)若是偶函數(shù),設(shè),若函數(shù)與的圖象只有一個公共點,求實數(shù)的取值范圍.
【答案】(1);(2)見解析;
【解析】試題分析:(1)函數(shù)有零點轉(zhuǎn)化為方程有解,只需求函數(shù)的值域, 的取值范圍即為其值域;
(2)根據(jù)是偶函數(shù),利用特殊值求,函數(shù)與的圖象只有一個公共點,即方程有一解,得方程有一解,換元轉(zhuǎn)化為一元二次方程只有一正根的問題,分類討論即可求出.
(1)由題意函數(shù)存在零點,即有解.
又 ,
易知在上是減函數(shù),又, ,即,
所以的取值范圍是.
(2),定義域為, 為偶函數(shù)
檢驗: ,
則為偶函數(shù),
因為函數(shù)與的圖象只有一個公共點,
所以方程只有一解,即只有一解,
令 ,則有一正根,
當(dāng)時, ,不符合題意,
當(dāng)時,若方程有兩相等的正根,則且 ,解得,
若方程有兩不相等實根且只有一正根時,因為圖象恒過點,只需圖象開口向上,所以即可,解得,
綜上, 或,即的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為的中點,AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求B1D與平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖5所示,已知四棱錐中,底面為矩形, 底面, ,
, 為的中點.
⑴指出平面與的交點所在位置,并給出理由;
⑵求平面將四棱錐分成上下兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)f(x)中,滿足“任意x1 , x2∈(0,+∞),且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是( )
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=ln x
D.f(x)=2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實際經(jīng)驗,經(jīng)過分析推斷得到的,在現(xiàn)實的生產(chǎn)生活中有著重要的意義,某快餐企業(yè)的營銷部門對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨填上和降雨量的大小有關(guān).
(1)天氣預(yù)報所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設(shè)計模擬實驗的方法研究三天中恰有兩天降雨的概率,利用計算機(jī)產(chǎn)生0大9之間取整數(shù)值的隨機(jī)數(shù),并用表示下雨,其余個數(shù)字表示不下雨,產(chǎn)生了20組隨機(jī)數(shù):
求由隨機(jī)模擬的方法得到的概率值;
(2)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:
試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不在造成過多浪費(fèi),預(yù)測降雨量為6毫米時需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))
附注:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且滿足不等式22a+1>25a﹣2 .
(1)求實數(shù)a的取值范圍.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實數(shù)a值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過橢圓右焦點的直線交橢圓于兩點, 為的中點,且直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)另一直線與橢圓交于兩點,原點到直線的距離為,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com