【題目】如圖,在四棱錐中, 底面,底面為直角梯形, , , 的中點(diǎn),平面點(diǎn).

(1)求證: ;

(2)求二面角的余弦值.

【答案】(1)證明見解析 (2)二面角的余弦值

【解析】試題分析:(1)先根據(jù)等腰三角形和已知推導(dǎo)出,從而,再由,得平面,由此證明;(2)以坐標(biāo)原點(diǎn), 軸, 軸, 軸,建立空間直角坐標(biāo)系分別求出平面與平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式能求二面角的余弦值.

試題解析:證明:(1)因?yàn)?/span>, 分別為 的中點(diǎn), ,所以.

因?yàn)?/span>,所以.

因?yàn)?/span>底面,所以.

因?yàn)?/span>,所以平面.

所以.

因?yàn)?/span>,所以平面

因?yàn)?/span>平面,所以.

(2)如圖,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系.

, , , , .

由(1)可知, 平面,

所以平面的法向量為.

設(shè)平面的法向量為

因?yàn)?/span>,

所以

,則, ,

所以,所以

所以二面角的余弦值.

【方法點(diǎn)晴】本題主要考查利用空間向量求二面角、線面垂直的判定及性質(zhì),屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時(shí),求不等式的解集;

(Ⅱ)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個(gè)數(shù)字,這8個(gè)數(shù)字各不相同,且奇數(shù)有3個(gè),偶數(shù)有5個(gè).每張卡片被取出的概率相等.

(Ⅰ)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個(gè)新數(shù),求所得新數(shù)是偶數(shù)的概率;

(Ⅱ)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

①若扇形的中心角為2,半徑為1,則該扇形的面積為1;②函數(shù)是偶函數(shù);③點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心;④函數(shù)上是減函數(shù).其中正確結(jié)論的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關(guān)系,某農(nóng)科所對(duì)此關(guān)系進(jìn)行了調(diào)查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)方程有兩個(gè)不等的負(fù)根, 方程無實(shí)根,若“”為真,“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù), ,則對(duì)于不同的實(shí)數(shù),函數(shù)的單調(diào)區(qū)間個(gè)數(shù)不可能是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為6萬元,每生產(chǎn)1千件需另投入2.9萬元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且.

(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)求該公司生產(chǎn)這一產(chǎn)品的最大年利潤(rùn)及相應(yīng)的年產(chǎn)量.(年利潤(rùn)=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)設(shè), ,若函數(shù)存在零點(diǎn),求的取值范圍;

(2)若是偶函數(shù),設(shè),若函數(shù)的圖象只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案