【題目】已知向量 =( ,﹣1), =( ),若存在非零實(shí)數(shù)k,t使得 = +(t2﹣3) , =﹣k +t ,且 ,試求: 的最小值.

【答案】解:∵ =( ,﹣1), =( , ), ∴| |= =2,| |= =1,且 = × +(﹣1)× =0
= +(t2﹣3) , =﹣k +t ,且 ,
=0,即( +(t2﹣3) )(﹣k +t )=0
展開(kāi)并化簡(jiǎn),得﹣k 2+(﹣kt2+3k+t) +t(t2﹣3) 2=0
將| |=2、| |=1和 =0代入上式,可得
﹣4k+t(t2﹣3)=0,整理得k= (t3﹣3t)
= = t2+t﹣ = (t+2)2
由此可得,當(dāng)t=﹣2時(shí), 的最小值等于﹣
【解析】根據(jù)向量數(shù)量積的坐標(biāo)公式和性質(zhì),分別求出| |=2,| |=1且 =0,由此將 =0化簡(jiǎn)整理得到k= (t3﹣3t).將此代入 ,可得關(guān)于t的二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性即可得到 的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)求ξ的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢驗(yàn)學(xué)習(xí)情況,某培訓(xùn)機(jī)構(gòu)于近期舉辦一場(chǎng)競(jìng)賽活動(dòng),分別從甲、乙兩班各抽取10名學(xué)員的成績(jī)進(jìn)行統(tǒng)計(jì)分析,其成績(jī)的莖葉圖如圖所示(單位:分),假設(shè)成績(jī)不低于90分者命名為“優(yōu)秀學(xué)員”.

(1)分別求甲、乙兩班學(xué)員成績(jī)的平均分(結(jié)果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:a,b,c∈(﹣∞,0),求證:a+ ,b+ ,c+ 中至少有一個(gè)不大于﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線(xiàn)性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是(
A.y與x具有正的線(xiàn)性相關(guān)關(guān)系
B.回歸直線(xiàn)過(guò)樣本點(diǎn)的中心( ,
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,我市某居民小區(qū)擬在邊長(zhǎng)為1百米的正方形地塊ABCD上劃出一個(gè)三角形地塊APQ種植草坪,兩個(gè)三角形地塊PAB與QAD種植花卉,一個(gè)三角形地塊CPQ設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)P在邊BC上,點(diǎn)Q在邊CD上,記∠PAB=a.
(1)當(dāng)∠PAQ= 時(shí),求花卉種植面積S關(guān)于a的函數(shù)表達(dá)式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請(qǐng)?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

)當(dāng),時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),極軸所在的直線(xiàn)為軸建立平面直角坐標(biāo)系.

(1)求圓的參數(shù)方程;

(2)在直線(xiàn)坐標(biāo)系中,點(diǎn)是圓上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案