【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:

年份(年)

1

2

3

4

5

維護(hù)費(fèi)(萬元)

1.1

1.6

2

2.5

2.8

1)在這5年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有1年多于2萬元的概率;

2)求關(guān)于的線性回歸方程.若該設(shè)備的價(jià)格是每臺(tái)16萬元,你認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,還是應(yīng)該使用滿八年換一次設(shè)備?請(qǐng)說明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

【答案】12)滿八年換一次設(shè)備更合理.見解析

【解析】

1)屬于古典概型,利用組合數(shù)公式即可求出答案;

2)依次求得,,代入公式即可求出回歸方程,再代入求出相應(yīng)平均費(fèi)用,再比較即可得出結(jié)論.

解:(1)用事件表示抽取的2年中平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有1年多于2萬元,則基本事件的出現(xiàn)是等可能的,屬于古典概型,

;

2,,,

,

,,

∴回歸方程為

若滿五年換一次設(shè)備,則每年每臺(tái)設(shè)備的平均費(fèi)用為(萬元),

若滿八年換一次設(shè)備,則每年每臺(tái)設(shè)備的平均費(fèi)用為

(萬元),

,∴滿八年換一次設(shè)備更合理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,某學(xué)校140名老師均在微信好友群中參與了“微信運(yùn)動(dòng)”,對(duì)運(yùn)動(dòng)10000步或以上的老師授予“運(yùn)動(dòng)達(dá)人”稱號(hào),低于10000步稱為“參與者”,為了解老師們運(yùn)動(dòng)情況,選取了老師們?cè)?月28日的運(yùn)動(dòng)數(shù)據(jù)進(jìn)行分析,統(tǒng)計(jì)結(jié)果如下:

運(yùn)動(dòng)達(dá)人

參與者

合計(jì)

男教師

60

20

80

女教師

40

20

60

合計(jì)

100

40

140

(Ⅰ)根據(jù)上表說明,能否在犯錯(cuò)誤概率不超過0.05的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱號(hào)與性別有關(guān)?

(Ⅱ)從具有“運(yùn)動(dòng)達(dá)人”稱號(hào)的教師中,采用按性別分層抽樣的方法選取10人參加全國第四屆“萬步有約”全國健走激勵(lì)大賽某賽區(qū)的活動(dòng),若從選取的10人中隨機(jī)抽取3人作為代表參加開幕式,設(shè)抽取的3人中女教師人數(shù)為,寫出的分布列并求出數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).

1)設(shè)直線的斜率分別為,,求證:常數(shù);

2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo)

②當(dāng)的內(nèi)切圓的面積為時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里裝有個(gè)均勻的紅球和個(gè)均勻的白球,每個(gè)球被取到的概率相等,已知從盒子里一次隨機(jī)取出1個(gè)球,取到的球是紅球的概率為,從盒子里一次隨機(jī)取出2個(gè)球,取到的球至少有1個(gè)是白球的概率為.

1)求,的值;

2)若一次從盒子里隨機(jī)取出3個(gè)球,求取到的白球個(gè)數(shù)不小于紅球個(gè)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:

年份(年)

1

2

3

4

5

維護(hù)費(fèi)(萬元)

1.1

1.6

2

2.5

2.8

1)在這5年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有1年多于2萬元的概率;

2)求關(guān)于的線性回歸方程.若該設(shè)備的價(jià)格是每臺(tái)16萬元,你認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,還是應(yīng)該使用滿八年換一次設(shè)備?請(qǐng)說明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一所醫(yī)院在某時(shí)間段為發(fā)燒超過38的病人特設(shè)發(fā)熱門診,該門診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:

日期

1

2

3

4

5

晝夜溫差()

8

10

13

12

7

就診人數(shù)(人)

18

25

28

27

17

(1)求的相關(guān)系數(shù),并說明晝夜溫差()與就診人數(shù)具有很強(qiáng)的線性相關(guān)關(guān)系.

(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預(yù)測(cè)晝夜溫差為9時(shí)的就診人數(shù).

附:樣本的相關(guān)系數(shù)為,當(dāng)時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系.

回歸直線方程為,其中,.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(i)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱中,是邊長(zhǎng)為2的正三角形,側(cè)面為菱形,且,,點(diǎn)OAC中點(diǎn).

1)求證:平面ABC;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案