已知數(shù)列{an}的第1項(xiàng)a1=1,且,則此數(shù)列的通項(xiàng)公式an=   
【答案】分析:將遞推關(guān)系式倒過來,構(gòu)造了等差數(shù)列.從而求出an的通項(xiàng)公式.
解答:解:由題意,得=

是以1為首項(xiàng),1為公差的等差數(shù)列.


故答案為:
點(diǎn)評:通過遞推關(guān)系式求通項(xiàng)公式,是數(shù)列中常見的題型.本題中所見的就是經(jīng)常考查的方法,構(gòu)造等差數(shù)列,常用的方法還有構(gòu)造等比數(shù)列,累加法,累乘等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的第1項(xiàng)是1,以后各項(xiàng)由公式an=2an-1+1給出,則這個(gè)數(shù)列的前5項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的第1項(xiàng)a1=1,且an+1=
an1+an
,(n=1,2,3,…),則此數(shù)列的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的第1項(xiàng)是1,第2項(xiàng)是2,以后各項(xiàng)由an=an-1+an-2(n>2)給出.
(1)寫出這個(gè)數(shù)列的前5項(xiàng);
(2)利用上面的數(shù)列{an},通過公式bn=
an+1an
構(gòu)造一個(gè)新的數(shù)列{bn},試寫出數(shù)列{bn}的前5項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知數(shù)列{an}的第1項(xiàng) a1=1,且an+1=
an
1+an
( n=1,2,3…)使用歸納法歸納出這個(gè)數(shù)列的通項(xiàng)公式.(不需證明)
(2)用分析法證明:若a>0,則
a2+
1
a2
-
2
≥a+
1
a
-2.

查看答案和解析>>

同步練習(xí)冊答案