【題目】如圖,直三棱柱中,,的中點,是等腰三角形,的中點,上一點

I平面,求;

II平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比

【答案】I;II

【解析】

試題分析:I借助題設條件運用線面的位置關系求解;II借助題設運用體積割補的方法探求

試題解析:

I中點為,連接,,………………1分

分別,為中點,

,四點共面,………………3分

且平面平面

平面,且平面

的中點,的中點,………………6分

II因為三棱柱為直三棱柱,平面,

,則平面,

,又三角形是等腰三角形,所以

如圖,將幾何體補成三棱柱

幾何體的體積為:

………………9分

又直三棱柱體積為:,………………11分

故剩余的幾何體棱臺的體積為

較小部分的體積與較大部分體積之比為:………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,記二次函數(shù))與兩坐標軸有三個交點,其中與x軸的交點為A,B.經(jīng)過三個交點的圓記為

(1)求圓的方程;

(2)設P為圓上一點,若直線PA,PB分別交直線于點M,N,則以MN為直徑的圓是否經(jīng)過線段AB上一定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.

(1)求的方程;

(2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】眾所周知,乒乓球是中國的國球,乒乓球隊內(nèi)部也有著很嚴格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內(nèi)部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為,,且各場比賽互不影響

1若甲至少獲勝兩場的概率大于,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?

2求甲獲勝場次的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式組所表示的平面區(qū)域為,記內(nèi)的整點個數(shù)為,(整點即橫、縱坐標均為整數(shù)的點)

(1)計算的值;

(2)求數(shù)列的通項公式;

(3)記數(shù)列的前項和為,且,若對于一切的正整數(shù),總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五棱錐中,平面,,,, ,是等腰三角形.

(1)求證:平面平面;

2求側棱上是否存在點,使得與平面所成角大小為,若存在,求出點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,8486,8686,8888,8888,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),AB兩樣本的下列數(shù)字特征對應相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)時,求函數(shù)的最小值;

(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑, 以防止害蟲的危害, 但采集上市時蔬菜仍存有少量的殘留農(nóng)藥, 食用時需要用清水清洗干凈, 下表是用清水(單位:千克) 清洗該蔬菜千克后, 蔬菜上殘留的農(nóng)藥(單位:微克) 的統(tǒng)計表:

(1)在下面的坐標系中, 描出散點圖, 并判斷變量的相關性;

(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程, ,計算平均值,完成以下表格(填在答題卡中) ,求出的回歸方程.( 精確到)

(3)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量低于微克時對人體無害, 為了放心食用該蔬菜,

估計需要用多少千克的清水清洗一千克蔬菜?(精確到,參考數(shù)據(jù))

(附:線性回歸方程中系數(shù)計算公式分別為;

, )

查看答案和解析>>

同步練習冊答案