【題目】在平面直角坐標(biāo)系中,記二次函數(shù))與兩坐標(biāo)軸有三個(gè)交點(diǎn),其中與x軸的交點(diǎn)為A,B.經(jīng)過(guò)三個(gè)交點(diǎn)的圓記為

(1)求圓的方程;

(2)設(shè)P為圓上一點(diǎn),若直線PA,PB分別交直線于點(diǎn)M,N,則以MN為直徑的圓是否經(jīng)過(guò)線段AB上一定點(diǎn)?請(qǐng)證明你的結(jié)論.

【答案】(1)(2)

【解析】

試題分析:(1)由函數(shù)式求得三個(gè)交點(diǎn)坐標(biāo),將其代入圓的方程可求得參數(shù)值,從而確定圓的方程;(2)設(shè),求得直線PA,PB與的交點(diǎn)M,N坐標(biāo),從而求得圓的方程,進(jìn)而求得定點(diǎn)坐標(biāo)

試題解析:(1)設(shè)所求圓的一般方程為

0 這與0 是同一個(gè)方程,故D2,F

0 0,此方程有一個(gè)根為-1,代入得出E=0.

所以圓C 的方程為.…………6分

(2)不妨設(shè) ,

設(shè)

以MN為直徑的圓方程為,

,

由P點(diǎn)任意性得: ,解得,

因?yàn)?/span>

即過(guò)線段AB上一定點(diǎn)…………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取個(gè)作為樣本,稱(chēng)出它們的重量(單位:克),重量分組區(qū)間為,,,由此得到樣本的重量頻率分布直方圖(如圖).

的值,并根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的眾數(shù)與平均值;

從盒子中隨機(jī)抽取個(gè)小球,其中重量在內(nèi)的小球個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望. 以直方圖中的頻率作為概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二數(shù)學(xué)期中測(cè)試中,為了了解學(xué)生的考試情況從中抽取了個(gè)學(xué)生的成績(jī)(滿分為100分)進(jìn)行統(tǒng)計(jì).按照[50,60), [60,70), [70,80), [80,90), [90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出得分在[50,60), [90,100]的數(shù)據(jù).

(1)求樣本容量和頻率分布直方圖中的值

(2)在選取的樣本中,從成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名參加志愿者活動(dòng),所抽取的3名同學(xué)中至少有一名成績(jī)?cè)赱90,100]內(nèi)的概率。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班倡議假期每位學(xué)生至少閱讀一本名著,為了解學(xué)生的閱讀情況,對(duì)該班所有學(xué)生進(jìn)行了調(diào)查調(diào)查結(jié)果如下表:

1試根據(jù)上述數(shù)據(jù),求這個(gè)班級(jí)女生閱讀名著的平均本數(shù);

2若從閱讀5本名著的學(xué)生中任選2人交流讀書(shū)心得,求選到男生和女生各1人的概率;

3試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小只需寫(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)的導(dǎo)函數(shù)為且滿足,,當(dāng)時(shí)恒成立,若非負(fù)實(shí)數(shù)、滿足,的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;

(2)若函數(shù)(其中的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)y1,y2,其中a>0,且a1,試確定x為何值時(shí),有:

(1)y1y2;(2)y1>y2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求適合下列條件的直線方程:

(1)經(jīng)過(guò)點(diǎn)P(3,2)且在兩坐標(biāo)軸上的截距相等;

(2)經(jīng)過(guò)點(diǎn)A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn)

I平面,求

II平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比

查看答案和解析>>

同步練習(xí)冊(cè)答案