【題目】已知函數(shù).

(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;

(2)若函數(shù)(其中的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求的取值范圍.

【答案】(1)(2)

【解析】

試題分析:(1)求出函數(shù)f(x)的定義域?yàn)镽,導(dǎo)函數(shù)f'(x)=2x-1-2ce-2x,利用f'(x)0得對(duì)于一切實(shí)數(shù)都成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求解函數(shù)的最小值,即可得到c的取值范圍;2)由(1)知f'x=2x-1-2ce-2x,通過Fx=0得,整理得,構(gòu)造函數(shù)

,通過導(dǎo)數(shù)求出導(dǎo)數(shù)的極值點(diǎn),判斷函數(shù)的單調(diào)性,求解函數(shù)的極小值即可

試題解析:(1)因?yàn)?/span>

所以函數(shù)的定義域?yàn)?/span>,且,

對(duì)于一切實(shí)數(shù)都成立.………2分

再令,則,令.

而當(dāng)時(shí),當(dāng)時(shí),

所以當(dāng)時(shí)取得極小值也是最小值,即.

所以的取值范圍是.………………6分

(2)由(1)知,所以由

,整理得.………………8分

,則,

,解得.

列表得:

由表可知當(dāng)時(shí),取得極大值;

當(dāng)時(shí),取得極小值.………………12分

又當(dāng)時(shí),,,所以此時(shí).

因此當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;因此滿足條件的取值范圍是.………………16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

求函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),證明:對(duì)任意的,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:

I如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的

II如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從I中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望

附參考公式,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知yf(x)是定義在R上的奇函數(shù),x<0時(shí)f(x)12x.

(1)求函數(shù)f(x)的解析式;

(2)畫出函數(shù)f(x)的圖像;

(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,記二次函數(shù))與兩坐標(biāo)軸有三個(gè)交點(diǎn),其中與x軸的交點(diǎn)為A,B.經(jīng)過三個(gè)交點(diǎn)的圓記為

(1)求圓的方程;

(2)設(shè)P為圓上一點(diǎn),若直線PA,PB分別交直線于點(diǎn)M,N,則以MN為直徑的圓是否經(jīng)過線段AB上一定點(diǎn)?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:數(shù)列對(duì)一切正整數(shù)均滿足,稱數(shù)列凸數(shù)列,以下關(guān)于凸數(shù)列的說法:

等差數(shù)列一定是凸數(shù)列;

首項(xiàng),公比的等比數(shù)列一定是凸數(shù)列;

若數(shù)列為凸數(shù)列,則數(shù)列是單調(diào)遞增數(shù)列;

若數(shù)列為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列

其中正確說法的序號(hào)是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,求的極值和單調(diào)區(qū)間;

2若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,假命題是_________ (填序號(hào)).

①經(jīng)過定點(diǎn)P(x0y0)的直線不一定都可以用方程yy0k(xx0)表示;

②經(jīng)過兩個(gè)不同的點(diǎn)P1(x1y1)、P2(x2,y2)的直線都可以用

方程(yy1)(x2x1)=(xx1)(y2y1)來表示;

③與兩條坐標(biāo)軸都相交的直線不一定可以用方程表示;

④經(jīng)過點(diǎn)Q(0,b)的直線都可以表示為ykxb.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐中,平面,,,, ,,是等腰三角形.

(1)求證:平面平面

2求側(cè)棱上是否存在點(diǎn),使得與平面所成角大小為,若存在,求出點(diǎn)位置,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案