3.若集合A=-{0,1,x,3},B={1,x2},A∪B=A,則滿足條件的實(shí)數(shù)x的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 由A∪B=A說明B是A的子集,然后利用子集的概念分類討論x的取值.

解答 解:由A∪B=A,所以B⊆A.
又A={0,1,3,x},B={1,x2},
所以x2=0,或x2=3,或x2=x.
x2=0時(shí),集合A違背元素的互異性,所以x2≠0.
x2=3時(shí),x=$±\sqrt{3}$.符合題意.
x2=x時(shí),得x=0或x=1,集合A均違背元素互異性,所以x2≠x.
所以滿足條件的實(shí)數(shù)x的個(gè)數(shù)有2個(gè).
故選B.

點(diǎn)評(píng) 本題考查了并集及其運(yùn)算,考查了子集的概念,考查了集合中元素的特性,解答的關(guān)鍵是要考慮集合中元素的互異性,是基本的概念題,也是易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-$\frac{1}{x}$+alnx(a∈R).
(1)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)已知g(x)=$\frac{1}{2}$x2+(m-1)x+$\frac{1}{x}$,m≤-$\frac{3\sqrt{2}}{2}$,h(x)=f(x)+g(x),當(dāng)時(shí)a=1,h(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)0<a<1,已知函數(shù)f(x)=$\left\{\begin{array}{l}-xlnx,0<x≤a\\ \frac{1}{e}cos2πx,a<x≤1\end{array}$,若對(duì)任意b∈(0,$\frac{1}{e}}$),函數(shù)g(x)=f(x)-b至少有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.$({0,\frac{1}{e}}]$B.$({0,\frac{3}{4}}]$C.$[{\frac{1}{e},1})$D.$[{\frac{1}{e},\frac{3}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t+4\sqrt{2}\end{array}$(t是參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).
(1)求圓心C的直角坐標(biāo);
(2)由直線l上的點(diǎn)向圓C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右頂點(diǎn)A(2,0)和上頂點(diǎn)B,直線AB被圓T:x2+y2-10x+16=0所截得的弦長(zhǎng)為$\frac{{12\sqrt{7}}}{7}$.
(1)求橢圓E的方程;
(2)過橢圓E的右焦點(diǎn)作不過原點(diǎn)的直線l與橢圓E交于M,N兩點(diǎn),直線MA,NA與直線x=3分別交于C,D兩點(diǎn),記△ACD的面積為S,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求方程2${\;}^{{x}^{2}+x}$=8x+1的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.從拋物線Γ:x2=4y外一點(diǎn)P引拋物線Γ的兩條切線PA和PB(切點(diǎn)為A,B),分別與x軸相交于C,D,若AB與y軸相交于點(diǎn)Q.
(Ⅰ)求證:四邊形PCQD是平行四邊形;
(Ⅱ)四邊形PCQD能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正三棱錐的底面邊長(zhǎng)為a,側(cè)棱與底面所成的角為60°,求正三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.過拋物線L:x2=2py(p>0)的焦點(diǎn)F且斜率為$\frac{3}{4}$的直線與拋物線L在第一象限的交點(diǎn)為P,且|PF|=5
(1)求拋物線L的方程;
(2)設(shè)直線l:y=kx+m與拋物線L交于A(x1,y1),B(x2,y2)兩點(diǎn).
(。┤鬹=2,線段AB的垂直平分線分別交y軸和拋物線L于M,N兩點(diǎn),(M,N位于直線l兩側(cè)),當(dāng)四邊形AMBN為菱形時(shí),求直線l的方程;
(ⅱ)若直線l過點(diǎn),且交x軸于點(diǎn)C,且$\overrightarrow{CA}$=a$\overrightarrow{AF}$,$\overrightarrow{CB}$=b$\overrightarrow{BF}$,對(duì)任意的直線l,a+b是否為定值?若是,求出a+b的值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案