【題目】已知函數(shù)f(x)= (a<0).
(1)當a=-1時,求函數(shù)f(x)的極值;
(2)若函數(shù)F(x)=f(x)+1沒有零點,求實數(shù)a的取值范圍.
【答案】(1)極小值為f(2)=-,無極大值.(2) (-e2,0).
【解析】試題分析:(1)將參數(shù)值代入得到表達式,根據(jù)極值的定義得到函數(shù)f(x)的極小值為f(2)=-;(2)研究函數(shù)的F(x)=f(x)+1單調(diào)性,畫出函數(shù)的大概變化趨勢,使得函數(shù)和x軸沒有交點即可。
解析:
(1)當a=-1時,f(x)=,f′(x)=.
由f′(x)=0,得x=2.
當x變化時,f′(x),f(x)的變化情況如下表:
x | (-∞,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + |
f(x) | ? | 極小值 | ? |
所以,函數(shù)f(x)的極小值為f(2)=-,函數(shù)f(x)無極大值.
(2)F′(x)=f′(x)==.
當a<0時,F(xiàn)′(x),F(xiàn)(x)隨x的變化情況如下表:
x | (-∞,2) | 2 | (2,+∞) |
F′(x) | - | 0 | + |
F(x) | ? | 極小值 | ? |
若使函數(shù)F(x)沒有零點,當且僅當F(2)=+1>0,
解得a>-e2,所以此時-e2<a<0.
故實數(shù)a的取值范圍為(-e2,0).
科目:高中數(shù)學 來源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;
(2)當為中點時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為圓O的直徑,點E、F在圓O上,AB ∥EF,矩形ABCD所在平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(1)求證:平面DAF⊥平面CBF;
(2)求直線AB與平面CBF所成角的大小;
(3)求AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若函數(shù)y=h(x)的單調(diào)減區(qū)間是,求實數(shù)a的值;
(2)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為,且與短軸的一個端點Q構(gòu)成一個等腰直角三角形,點P()在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R()
(3)求面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設(shè)P是BE的中點,求三棱錐P B1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的焦點是橢圓的頂點, 為橢圓的左焦點且橢圓經(jīng)過點.
(1)求橢圓的方程;
(2)過橢圓的右頂點作斜率為的直線交橢圓于另一點,連結(jié)并延長交橢圓于點,當的面積取得最大值時,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中a∈R.
(Ⅰ)當a=1時,判斷f(x)的單調(diào)性;
(Ⅱ)若g(x)在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com