分析 (1)由正弦定理,三角函數(shù)恒等變換的應用化簡已知可得sinA=4sinAcosC,結合sinA>0,即可得解cosC的值.
(2)由已知利用同角三角函數(shù)基本關系式可求sinC的值,利用三角形面積公式可求ab=2,由余弦定理可得a2+b2=4,聯(lián)立即可解得a,b的值. …(10分)
解答 (本題滿分為10分)
解:(1)∵ccosB=(4a-b)cosC,
由正弦定理,得sinCcosB=(4sinA-sinB)cosC…(1分)
化簡,得sin(B+C)=4sinAcosC﹒…(3分)
∵A+B+C=π,∴sinA=sin(B+C)﹒
又∵A∈(0,π),
∵sinA>0,
∴$cosC=\frac{1}{4}$. …(5分)
(2)∵C∈(0,π),$cosC=\frac{1}{4}$,
∴$sinC=\sqrt{1-{{cos}^2}C}=\sqrt{1-\frac{1}{16}}=\frac{{\sqrt{15}}}{4}$. …(6分)
∵$S=\frac{1}{2}absinC=\frac{{\sqrt{15}}}{4}$,∴ab=2﹒①
∵$c=\sqrt{3}$,由余弦定理得:3=a2+b2-$\frac{1}{2}$ab,…(8分)
∴a2+b2=4,②
由①②,得a4-4a2+4=0,從而a2=2,可得:$a=±\sqrt{2}$(舍負),
所以,可得:$b=\sqrt{2}$,
∴$a=b=\sqrt{2}$. …(10分)
點評 本題主要考查了正余弦定理,兩角和正弦公式及誘導公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+6 | 5 | 6 | 7 | 8 | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com