(12分)已知曲線C方程:
(1)當(dāng)m為何值時(shí),此方程表示圓;
(2)若m=0,是否存在過點(diǎn)P(0、2)的直線與曲線C交于A、B兩點(diǎn),且,若存在,求直線的方程;若不存在,說明理由。


(1)時(shí)表示圓
(2)直線的方程

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+
y2
a
=1
,直線l:kx-y-k=0,O為坐標(biāo)原點(diǎn).
(1)討論曲線C所表示的軌跡形狀;
(2)當(dāng)k=1時(shí),直線l與曲線C相交于兩點(diǎn)M,N,若|MN|=
2
,求曲線C的方程;
(3)當(dāng)a=-1時(shí),直線l與曲線C相交于兩點(diǎn)M,N,試問在曲線C上是否存在點(diǎn)Q,使得
OM
+
ON
OQ
?若存在,求實(shí)數(shù)λ的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρ=4cosθ
(1)若點(diǎn)A(1,
π
2
),點(diǎn)P是曲線C上任一點(diǎn),求
AP
2
的取值范圍;
(2)若直線l的參數(shù)方程是
x=t+m
y=t
,(t為參數(shù)),且直線l與曲線C有兩個(gè)交點(diǎn)M、N,且
CM
CN
=0
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
y2
m
+x2=1;
(1)由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,點(diǎn)P在
EF
上,且 
EP
=-
1
3
PF
.問:點(diǎn)P的軌跡可能是圓嗎?請(qǐng)說明理由;
(2)如果直線l的斜率為
2
,且過點(diǎn)M(0,-2),直線l交曲線C于A,B兩點(diǎn),又
MA
MB
=-
9
2
,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省四地六校高三第三次月考數(shù)學(xué)文卷 題型:解答題

(12分)已知曲線C方程:

(1)當(dāng)m為何值時(shí),此方程表示圓;

(2)若m=0,是否存在過點(diǎn)P(0、2)的直線與曲線C交于A、B兩點(diǎn),且,若存在,求直線的方程;若不存在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案