5.函數(shù)f(x)=x-log${\;}_{\frac{1}{2}}$x的零點(diǎn)個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.無(wú)數(shù)多個(gè)

分析 畫(huà)出兩個(gè)函數(shù)的圖象,判斷交點(diǎn)個(gè)數(shù),即可得到選項(xiàng).

解答 解:函數(shù)f(x)=x-log${\;}_{\frac{1}{2}}$x的零點(diǎn)個(gè)數(shù),就是函數(shù)y=x與y=log${\;}_{\frac{1}{2}}$x,兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù),
如圖:
可知函數(shù)的圖象只有一個(gè)交點(diǎn).
函數(shù)f(x)=x-log${\;}_{\frac{1}{2}}$x的零點(diǎn)個(gè)數(shù)為:1個(gè).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)個(gè)數(shù)的判斷,考查數(shù)形結(jié)合思想的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.求函數(shù)y=lg(sin2x+2cosx+2)在$x∈[{-\frac{π}{6}\;,\;\;\frac{2π}{3}}]$上的最大值lg4,最小值lg$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,設(shè)a=f(1),b=f(log0.53),c=f(log23-1),則( 。
A.a<b<cB.b<a<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知圓x2+y2+2x-2y+2a=0截直線x+y+2=0所得弦長(zhǎng)為4,則實(shí)數(shù)a的值是( 。
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知冪函數(shù)y=xn的圖象經(jīng)過(guò)點(diǎn)(2,8),則此冪函數(shù)的解析式是( 。
A.y=2xB.y=3xC.y=x3D.y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{3},x>0}\\{cosx,-\frac{π}{2}<x<0}\end{array}\right.$(a∈R),若f(f(-$\frac{π}{3}$))=1,則a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=x2-a|x|+a2-3有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a=( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,D在AB上,AD:DB=1:2,E為AC中點(diǎn),CD、BE相交于點(diǎn)P,連結(jié)AP.設(shè)$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),則x,y的值分別為(  )
A.$\frac{1}{2},\frac{1}{3}$B.$\frac{1}{3},\frac{2}{3}$C.$\frac{1}{5},\frac{2}{5}$D.$\frac{1}{3},\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow a\;,\;\overrightarrow b$是單位向量,$\overrightarrow a•\overrightarrow b=0$,若$|{\overrightarrow c-\overrightarrow a-\overrightarrow b}|=1$,則$|{\overrightarrow c}|$的最大值為(  )
A.2B.$\sqrt{2}$C.3D.$\sqrt{2}+1$

查看答案和解析>>

同步練習(xí)冊(cè)答案