【題目】已知點(diǎn),,橢圓C:()的離心率為,過(guò)點(diǎn)且斜率為1的直線被橢圓C截得的線段長(zhǎng)為.
(1)求橢圓C的方程;
(2)設(shè)直線不經(jīng)過(guò)點(diǎn),且與C相交于A,B兩點(diǎn).若直線與直線的斜率的和為,證明:過(guò)定點(diǎn).
【答案】(1);(2)證明見解析
【解析】
(1)聯(lián)立直線的方程和橢圓方程,由弦長(zhǎng)公式,結(jié)合橢圓的離心率即可求得橢圓方程;
(2)設(shè)出直線的方程,聯(lián)立橢圓方程,根據(jù)韋達(dá)定理,結(jié)合直線與直線的斜率的和為,即可容易證明.
(1)由題意知,,則,
于是橢圓C的方程可化為,
直線的方程為,
聯(lián)立得.
設(shè),為兩交點(diǎn),
則,, 由得(*)
再由弦長(zhǎng)公式得,
解得代入(*)成立,從而,
所以橢圓C的方程為.
(2)設(shè)直線與的斜率分別為,,
如果與x軸垂直,設(shè):,
由題設(shè)知且,
可得A,B坐標(biāo)分別為,,
則,得,
此時(shí)的方程為,與橢圓只有一個(gè)公共點(diǎn),與題意不符.
從而可設(shè):()
將代入
得.
由題設(shè)可知,
設(shè),則,
而
,
由題設(shè)知得,
即,
解得,代入,得,
此時(shí),
所以過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。
A.120種B.240種C.144種D.288種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為,且與短軸兩端點(diǎn)的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接“五一”節(jié)的到來(lái),某單位舉行“慶五一,展風(fēng)采”的活動(dòng).現(xiàn)有6人參加其中的一個(gè)節(jié)目,該節(jié)目由兩個(gè)環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個(gè)選擇方案:按下電腦鍵盤“Enter”鍵則會(huì)出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個(gè)點(diǎn)數(shù)和,并在屏幕的下方計(jì)算出的值.現(xiàn)規(guī)定:每個(gè)人去按“Enter”鍵,當(dāng)顯示出來(lái)的小于時(shí)則參加環(huán)節(jié),否則參加環(huán)節(jié).
(1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;
(2)用分別表示這6個(gè)人中去參加該節(jié)目兩個(gè)環(huán)節(jié)的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有兩臺(tái)不同機(jī)器和生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為機(jī)器生產(chǎn)的產(chǎn)品比機(jī)器生產(chǎn)的產(chǎn)品好;
生產(chǎn)的產(chǎn)品 | 生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上(含良好) | |||
合格 | |||
合計(jì) |
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,從兩臺(tái)不同機(jī)器和生產(chǎn)的產(chǎn)品中各隨機(jī)抽取2件,求4件產(chǎn)品中機(jī)器生產(chǎn)的優(yōu)等品的數(shù)量多于機(jī)器生產(chǎn)的優(yōu)等品的數(shù)量的概率;
(3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元/件,機(jī)器每生產(chǎn)10萬(wàn)件的成本為20萬(wàn)元,機(jī)器每生產(chǎn)10萬(wàn)件的成本為30萬(wàn)元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬(wàn)件產(chǎn)品,若收益之差達(dá)到5萬(wàn)元以上,則淘汰收益低的機(jī)器,若收益之差不超過(guò)5萬(wàn)元,則仍然保留原來(lái)的兩臺(tái)機(jī)器.你認(rèn)為該工廠會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器嗎?
附:獨(dú)立性檢驗(yàn)計(jì)算公式:.
臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】出版商為了解某科普書一個(gè)季度的銷售量(單位:千本)和利潤(rùn)(單位:元/本)之間的關(guān)系,對(duì)近年來(lái)幾次調(diào)價(jià)之后的季銷售量進(jìn)行統(tǒng)計(jì)分析,得到如下的10組數(shù)據(jù).
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 | |
18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
根據(jù)上述數(shù)據(jù)畫出如圖所示的散點(diǎn)圖:
(1)根據(jù)圖中所示的散點(diǎn)圖判斷和哪個(gè)更適宜作為銷售量關(guān)于利潤(rùn)的回歸方程類型?(給出判斷即可,不需要說(shuō)明理由)
(2)根據(jù)(1)中的判斷結(jié)果及參考數(shù)據(jù),求出關(guān)于的回歸方程;
(3)根據(jù)回歸方程設(shè)該科普書一個(gè)季度的利潤(rùn)總額為(單位:千元),當(dāng)季銷售量為何值時(shí),該書一個(gè)季度的利潤(rùn)總額預(yù)報(bào)值最大?(季利潤(rùn)總額=季銷售量×每本書的利潤(rùn))
參考公式及參考數(shù)據(jù):
①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的公式分別為.
②參考數(shù)據(jù):
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
表中.另:.計(jì)算時(shí),所有的小數(shù)都精確到0.01.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在單位正方體中,點(diǎn)P在線段上運(yùn)動(dòng),給出以下四個(gè)命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】青島二中學(xué)生民議會(huì)在周五下午高峰時(shí)段,對(duì)公交路甲站和線乙站各隨機(jī)抽取了位乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從等車到乘上車的時(shí)間,乘車等待時(shí)間不超過(guò)分鐘).將統(tǒng)計(jì)數(shù)據(jù)按,,,…,分組,制成頻率分布直方圖:
假設(shè)乘客乘車等待時(shí)間相互獨(dú)立.
(1)此時(shí)段,從甲站的乘客中隨機(jī)抽取人,記為事件;從乙站的乘客中隨機(jī)抽取人,記為事件.若用頻率估計(jì)概率,求“兩人乘車等待時(shí)間都小于分鐘”的概率;
(2)此時(shí)段,從乙站的乘客中隨機(jī)抽取人(不重復(fù)抽。,抽得在的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)如圖所示,是一個(gè)矩形花壇,其中米,米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求:在上,在上,對(duì)角線過(guò)點(diǎn),且矩形的面積小于150平方米.
(1)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;
(2)當(dāng)的長(zhǎng)度是多少時(shí),矩形的面積最。坎⑶笞钚∶娣e.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com