【題目】某地為弘揚(yáng)中國(guó)傳統(tǒng)文化舉辦“傳統(tǒng)文化常識(shí)問(wèn)答活動(dòng)”,隨機(jī)對(duì)該市歲的人群抽取一個(gè)容量為的樣本,并將樣本數(shù)據(jù)分成五組: ,再將其按從左到右的順序分別編號(hào)為第組,第組,…,第組,繪制了樣本的頻率分布直方圖,并對(duì)回答問(wèn)題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第組 |
| ||
第組 |
| ||
第組 |
| ||
第組 |
| ||
第組 |
|
⑴分別求出, 的值;
⑵從組回答正確的人中用分層抽樣的方法抽取人,則第組每組應(yīng)各抽取多少人?
⑶在⑵的前提下,決定在所抽取的人中隨機(jī)抽取人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第組至少有人獲得幸運(yùn)獎(jiǎng)的概率.
【答案】(1), (2)第2,3,4組每組應(yīng)各依次抽取人,人,1人 (3)
【解析】試題分析:(1)先根據(jù)頻率分步直方圖求出,再求出第二組和第四組的人數(shù),再根據(jù)比例求出
(2)分層抽樣,即按照比例抽取,所以先求第2,3,4組回答正確的人的比為,再進(jìn)行抽取。(3)此題是古典概型的概率問(wèn)題,先寫(xiě)出所有的基本事件,再寫(xiě)出滿足條件的基本事件。
試題解析:解:(1)第1組人數(shù),所以, 2分
第2組頻率為: ,人數(shù)為: ,所以, 4分
第4組人數(shù),所以, 6分
(2)第2,3,4組回答正確的人的比為,所以第2,3,4組每組應(yīng)各依次抽取人,人,1人 9分
(3)記“所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)”為事件A,抽取的6人中,第2組的設(shè)為, ,第3組的設(shè)為, , ,第4組的設(shè)為, 則從6名幸運(yùn)者中任取2名的所有可能的情況有15種,它們是:
,,,,,,,,,
,,,,,. 11分
其中第2組至少有1人的情況有9種,他們是:,,,,,,,,. 13分
. 14分
答:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率為. 15分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別 | 頻數(shù) | 頻率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合計(jì) |
(1)求出表中字母所對(duì)應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫(huà)出頻率分布直方圖;
(3)估計(jì)該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A. 空間不同的三點(diǎn)確定一個(gè)平面
B. 空間兩兩相交的三條直線確定一個(gè)平面
C. 空間有三個(gè)角為直角的四邊形一定是平面圖形
D. 和同一條直線相交的三條平行直線一定在同一平面內(nèi)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)若數(shù)列是等比數(shù)列,求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(A)已知平行四邊形中, , , 為的中點(diǎn), .
(1)求的長(zhǎng);
(2)設(shè), 為線段、上的動(dòng)點(diǎn),且,求的最小值.
(B)已知平行四邊形中, , , 為的中點(diǎn), .
(1)求的長(zhǎng);
(2)設(shè)為線段上的動(dòng)點(diǎn)(不包含端點(diǎn)),求的最小值,以及此時(shí)點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩艘輪船都要?吭谕粋(gè)泊位,它們可能在一晝夜的任意時(shí)刻到達(dá).甲、乙兩船停靠泊位的時(shí)間分別為4小時(shí)與2小時(shí),求有一艘船停靠泊位時(shí)必需等待一段時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,點(diǎn).
(1)過(guò)點(diǎn)的直線與圓交與兩點(diǎn),若,求直線的方程;
(2)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)記為,為坐標(biāo)原點(diǎn),且滿足,求使得取得最小值時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王于年初用50萬(wàn)元購(gòu)買(mǎi)一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,假定該車每年的運(yùn)輸收入均為25萬(wàn)元.小王在該車運(yùn)輸累計(jì)收入超過(guò)總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價(jià)格為(25-x)萬(wàn)元(國(guó)家規(guī)定大貨車的報(bào)廢年限為10年).
(1)大貨車運(yùn)輸?shù)降趲啄昴甑,該車運(yùn)輸累計(jì)收入超過(guò)總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤(rùn)最大?(利潤(rùn)=累計(jì)收入+銷售收入-總支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:“,使等式成立”是真命題.
(1)求實(shí)數(shù)的取值集合;
(2)設(shè)不等式的解集為,若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com