【題目】一家污水處理廠有兩個相同的裝滿污水的處理池,通過去掉污物處理污水,池用傳統(tǒng)工藝成本低,每小時去掉池中剩余污物的10%,池用創(chuàng)新工藝成本高,每小時去掉池中剩余污物的19%.
(1)池要用多長時間才能把污物的量減少一半;(精確到1小時)
(2)如果污物減少為原來的10%便符合環(huán)保規(guī)定,處理后的污水可以排入河流,若兩池同時工作,問經(jīng)過多少小時后把兩池水混合便符合環(huán)保規(guī)定.(精確到1小時)
【答案】(1)7小時;(2)17小時
【解析】
(1)由題意可得池每小時剩余原來的,設(shè)池要用小時才能把污物的量減少一半,則,兩邊取對數(shù),計算可得所求值;
(2)設(shè)、兩池同時工作,經(jīng)過小時后把兩池水混合便符合環(huán)保規(guī)定,池每小時剩余原來的,可得,由二次方程的解法和兩邊取對數(shù)可得所求值.
解:(1)池用傳統(tǒng)工藝成本低,每小時去掉池中剩余污物的,剩余原來的,
設(shè)池要用小時才能把污物的量減少一半,
則,可得,
則池要用7小時才能把污物的量減少一半;
(2)設(shè)、兩池同時工作,經(jīng)過小時后把兩池水混合便符合環(huán)保規(guī)定,
池用創(chuàng)新工藝成本高,每小時去掉池中剩余污物的,剩余原來的,
可得,即,
可得,
可得.
則、兩池同時工作,經(jīng)過17小時后把兩池水混合便符合環(huán)保規(guī)定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新中國成立70周年以來,黨中央國務(wù)院高度重視改善人民生活,始終把提高人民生活水平作為一切工作的出發(fā)點(diǎn)和落腳點(diǎn)城鄉(xiāng)居民收入大幅增長,居民生活發(fā)生了翻天覆地的變化.下面是1949年及2015年~2018年中國居民人均可支配收入(元)統(tǒng)計圖.以下結(jié)論中不正確的是( )
A.20l5年-2018年中國居民人均可支配收入與年份成正相關(guān)
B.2018年中居民人均可支配收入超過了1949年的500倍
C.2015年-2018年中國居民人均可支配收入平均超過了24000元
D.2015年-2018年中圍居民人均可支配收入都超過了1949年的500倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱柱中,底面的邊長為1,為正方形的中心.
(1)求證:平面;
(2)若異面直線與所成的角的正弦值為,求直線到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸端點(diǎn)為,,點(diǎn)是橢圓上的動點(diǎn),且不與,重合,點(diǎn)滿足,.
(Ⅰ)求動點(diǎn)的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山東省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為、、、、、、、共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.等級考試科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
舉例說明.
某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科等級的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬等級.而等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:
設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為,,求得.
四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.
(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布.
(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;
(ii)求物理原始分在區(qū)間的人數(shù);
(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記表示這4人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的極值;
(2)當(dāng)時,討論的單調(diào)性;
(3)若對任意的,,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com