【題目】正四棱柱中,底面的邊長為1,為正方形的中心.

1)求證:平面;

2)若異面直線所成的角的正弦值為,求直線到平面的距離.

【答案】1)證明見解析(2

【解析】

1)通過證明四邊形一組對邊平行且相等,得出四邊形是平行四邊形,從而得出另一組對邊平行,得出線線,即可證出線面;

2)法一:通過已知異面直線所成的角的正弦值為,可求出正方體的高,由(1)得出平面,將直線到平面的距離轉(zhuǎn)化成點到面的距離,即點到平面的距離,再利用線面垂直的判定和性質(zhì),證出平面,所以在直角三角形中,求出的值,即可得出所求答案;

法二:直線到平面的距離轉(zhuǎn)化成點到面的距離,即點到平面的距離,再利用三棱錐等體積法求點到面的距離,即,化簡便可求出結(jié)果.

1)連接交于點,連接,交于點,連接,

正四棱柱中,,且,又因為點、分別為、的中點,

所以,且,

則四邊形為平行四邊形,故,

不在平面內(nèi),在平面內(nèi),

平面.

2)由(1),,故異面直線所成的角等于,

因為正四棱柱中,側(cè)棱底面,則,

,則平面,則.

因正方形的邊長為1,則.

,則.

因為平面,則直線到平面的距離等于點到平面的距離,

的中點,則點到平面的距離等于點到平面的距離,

在三角形內(nèi)作,因為平面,

則平面平面,故平面.

直角三角形中,,,,

.

則直線到平面的距離為.

方法二(等體積法):

因為平面,則直線到平面的距離等于點到平面的的距離,

的中點,則點到平面的距離等于點到平面的距離,

設(shè)點到平面的距離為,由,

,且,.

求得.則直線到平面的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱是“回歸數(shù)列”.

(1)①前項和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;

②通項公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;

(2)設(shè)是等差數(shù)列,首項,公差,若是“回歸數(shù)列”,求的值;

(3)是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”,使得成立,請給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年一種新奇水果深受廣大消費(fèi)者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:

x

1

3

4

6

7

y

5

6.5

7

7.5

8

yx可用回歸方程(其中,為常數(shù))進(jìn)行模擬.

1)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150/箱,試預(yù)測該新奇水果100箱的利潤是多少元.(利潤=售價-成本)

2)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地可配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖,用這16天的情況來估計相應(yīng)的概率.一個運(yùn)輸戶擬購置n輛小貨車專門運(yùn)輸該農(nóng)戶為甲地配送的該新奇水果,一輛貨車每天只能運(yùn)營一趟,每輛車每趟最多只能裝載40箱該新奇水果,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利500元,若未發(fā)車,則每輛車每天平均虧損200元試比較時此項業(yè)務(wù)每天的利潤平均值的大小.

參考數(shù)據(jù)與公式:設(shè),則

0.54

6.8

1.53

0.45

線性回歸直線中,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款手游,頁面上有一系列的偽裝,其中隱藏了4個寶藏.如果你在規(guī)定的時間內(nèi)找到了這4個寶藏,將會彈出下一個頁面,這個頁面仍隱藏了2個寶藏,若能在規(guī)定的時間內(nèi)找到這2個寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;如果你在規(guī)定的時間內(nèi)找到了3個寶藏,仍會彈出下一個頁面,但這個頁面隱藏了4個寶藏,若能在規(guī)定的時間內(nèi)找到這4個寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;其它情況下,不會彈出下一個頁面,闖關(guān)失敗,并結(jié)束游戲.

假定你找到任何一個寶藏的概率為,且能否找到其它寶藏相互獨(dú)立..

1)求闖關(guān)成功的概率;

2)假定你付1Q幣游戲才能開始,能進(jìn)入下一個頁面就能獲得2Q幣的獎勵,闖關(guān)成功還能獲得另外4Q幣的獎勵,闖關(guān)失敗沒有額外的獎勵.求一局游戲結(jié)束,收益的Q幣個數(shù)X的數(shù)學(xué)期望(收益=收入-支出).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢C交于MN兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家污水處理廠有兩個相同的裝滿污水的處理池,通過去掉污物處理污水,池用傳統(tǒng)工藝成本低,每小時去掉池中剩余污物的10%,池用創(chuàng)新工藝成本高,每小時去掉池中剩余污物的19%.

1池要用多長時間才能把污物的量減少一半;(精確到1小時)

2)如果污物減少為原來的10%便符合環(huán)保規(guī)定,處理后的污水可以排入河流,若兩池同時工作,問經(jīng)過多少小時后把兩池水混合便符合環(huán)保規(guī)定.(精確到1小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點F是拋物線的焦點,點在拋物線

求橢圓的方程;

已知斜率為k的直線l交橢圓AB兩點,,直線AMBM的斜率乘積為,若在橢圓上存在點N,使,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若,試討論函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案