5.已知$\frac{π}{2}$<α<π,-π<β<0,tanα=-$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,則2α+β=$\frac{7π}{4}$.

分析 由已知利用二倍角的正切函數(shù)公式可求tan2α,利用兩角和的正切函數(shù)公式可求tan(2α+β),結(jié)合2α+β的范圍,由正切函數(shù)的圖象和性質(zhì)即可得解2α+β的值.

解答 解:∵tanα=-$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,$\frac{π}{2}$<α<π,-π<β<0,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{3}{4}$,tan(2α+β)=$\frac{tan2α+tanβ}{1-tan2αtanβ}$=$\frac{(-\frac{3}{4})+(-\frac{1}{7})}{1-(-\frac{3}{4})×(-\frac{1}{7})}$=-1,
又∵$\frac{3π}{2}$<2α<2π,-$\frac{π}{2}$<β<0,可得:2α+β∈(π,2π),
∴2α+β=$\frac{7π}{4}$.
故答案為:$\frac{7π}{4}$.

點評 本題主要考查了二倍角的正切函數(shù)公式,兩角和的正切函數(shù)公式,正切函數(shù)的圖象和性質(zhì)在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,求出tan2α的值的關(guān)鍵.注意角的范圍.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河南八市高二文上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

中,若,,,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2sin(2x+ϕ)滿足f(a+x)=f(a-x),則$f(a+\frac{π}{4})$=( 。
A.0B.-2C.2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)y=f(x)同時具有下列三個性質(zhì):(1)最小正周期為π;(2)在$x=\frac{π}{3}$時取得最大值1;(3)在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上是增函數(shù).則y=f(x)的解析式可以是( 。
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({2x+\frac{π}{3}})$C.$y=sin({2x-\frac{π}{6}})$D.$y=cos({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x2+ax+a)ex(a≤2,x∈R)
(Ⅰ)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實數(shù)a,使f(x)的極大值為3?若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,且0≤α<β<γ<2π,則β-α=( 。
A.$\frac{4π}{3}或\frac{2π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=-SnSn+1,則使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時n的值為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a、b∈R,則“a3>b3且ab<0”是“$\frac{1}{a}$>$\frac{1}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\frac{x}{x-1}$,則在點(2,f(2))處的切線方程為x+y-4=0.(寫成一般式方程)

查看答案和解析>>

同步練習(xí)冊答案