【題目】如圖所示,在三棱柱中,平面是線段上的動(dòng)點(diǎn),是線段上的中點(diǎn).

(Ⅰ)證明:

(Ⅱ)若,且直線所成角的余弦值為,試指出點(diǎn)在線段上的位置,并求三棱錐的體積.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)

【解析】

(Ⅰ)根據(jù)棱柱為直棱柱可得平面平面BC由DBC中點(diǎn),得AD垂直BC,由面面垂直的性質(zhì)定理可得,從而得到證明;(Ⅱ)由直線所成角得,可得長(zhǎng)度,從而看確定點(diǎn)E的位置,然后利用可求得所求體積.

(Ⅰ)因?yàn)?/span>,所以平面ABC.

平面BC,所以平面平面BC.

因?yàn)榫段的中點(diǎn)為,且是等腰三角形,所以

平面ABC, 平面ABC平面BC=BC ,

所以.又因?yàn)?/span>,所以

(Ⅱ),則.,即.又,所以,故,所以是直角三角形.

在三棱柱中,,直線所成角的余弦為

則在中,,所以.

中,,所以.因?yàn)?/span>,

所以點(diǎn)是線段的靠近點(diǎn)的三等分點(diǎn).

因?yàn)?/span>

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做實(shí)驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.下表1和表2分別是注射藥物和藥物后的實(shí)驗(yàn)結(jié)果.(皰疹面積單位:

1:注射藥物后皮膚皰疹面積的頻數(shù)分布表

皰疹面積

頻數(shù)

30

40

20

10

2:注射藥物后皮膚皰疹面積的頻數(shù)分布表

皰疹面積

頻數(shù)

10

25

20

30

15

(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大;

(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認(rèn)為注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.

皰疹面積小于

皰疹面積不小于

合計(jì)

注射藥物

注射藥物

合計(jì)

附:

0.100

0.050

0.025

0.01

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn),點(diǎn)為拋物線上一點(diǎn),且不在直線上,則周長(zhǎng)取最小值時(shí),線段的長(zhǎng)為( )

A. 1B. C. 5D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣2mx+x2(m>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象與x軸交于A,B兩點(diǎn),其橫坐標(biāo)分別為x1,x2(x1<x2),線段AB的中點(diǎn)的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx﹣cx2﹣bx的零點(diǎn).求證(x1﹣x2)h'(x0)≥+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下四個(gè)命題:

1命題,使得,則,都有;

2)已知函數(shù)f(x)|log2x|,ab,f(a)f(b),ab1;

3若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

其中真命題的序號(hào)為______________.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O是平面直角坐標(biāo)系的原點(diǎn),雙曲線.

1)過(guò)雙曲線的右焦點(diǎn)x軸的垂線,交AB兩點(diǎn),求線段AB的長(zhǎng);

2)設(shè)M的右頂點(diǎn),P右支上任意一點(diǎn),已知點(diǎn)T的坐標(biāo)為,當(dāng)的最小值為時(shí),求t的取值范圍;

3)設(shè)直線的右支交于A,B兩點(diǎn),若雙曲線右支上存在點(diǎn)C使得,求實(shí)數(shù)m的值和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線

1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;

2)若直線軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直三棱柱,E是棱上動(dòng)點(diǎn),FAB中點(diǎn),

1)求證:平面;

2)當(dāng)是棱中點(diǎn)時(shí),求與平面所成的角;

3)當(dāng)時(shí),求二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案