已知數(shù)列{an}的前n項(xiàng)和為Sn,若an=
2
n(n+2)
,則S10=(  )
A、
175
132
B、
11
12
C、
11
6
D、
175
66
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由于an=
2
n(n+2)
=
1
n
-
1
n+2
,利用“裂項(xiàng)求和”即可得出.
解答: 解:∵an=
2
n(n+2)
=
1
n
-
1
n+2
,
∴Sn=(1-
1
3
)+(
1
2
-
1
4
)
+(
1
3
-
1
5
)
+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)

=1+
1
2
-
1
n+1
-
1
n+2

則S10=
3
2
-
1
11
-
1
12
=
175
132

故選:A.
點(diǎn)評(píng):本題考查了“裂項(xiàng)求和”,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C為△ABC的三內(nèi)角,向量
a
=(2cos
A-B
2
,3sin
A+B
2
),且|
a
|=
26
2
,則tanC的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2-2
3x
+
1
2
的零點(diǎn)個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn且滿足S15>0,S16<0則
S1
a1
,
S2
a2
,
S3
a3
,…,
S15
a15
中最大的項(xiàng)為( 。
A、
S6
a6
B、
S7
a7
C、
S8
a8
D、
S9
a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(4,-2,-4),
b
=(6,-3,2),則(2
a
-3
b
)•(
a
+2
b
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F(5,0)是雙曲線
x2
16
-
y2
m
=1(m是常數(shù))的一個(gè)焦點(diǎn),則m的值為( 。
A、3B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間直角坐標(biāo)系中與點(diǎn)P(2,3,5)關(guān)于yoz平面對(duì)稱的點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=7,AB=5,∠A=120°,則△ABC的面積等于(  )
A、5
3
B、10
3
C、
15
3
4
D、
15
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過(guò)4噸時(shí),每頓為2.10元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每頓3.00元,某月甲、乙兩戶共交水費(fèi)y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)如甲、乙兩戶該月共交水費(fèi)40.8元,分別求出甲、乙兩戶該月的用水量和水費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案