在等差數(shù)列{an}中,前15項的和S15=90,則a8為( 。
A、6B、3C、12D、4
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:直接利用等差數(shù)列的前15項和結(jié)合等差數(shù)列的性質(zhì)求得a8的值.
解答: 解:∵數(shù)列{an}是等差數(shù)列,
∴a1+a15=2a8,
S15=
(a1+a15)×15
2
=15a8=90

得a8=6.
故選:A.
點評:本題考查了等差數(shù)列的前n項和,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二項式(x-
1
x
9的展開式中x3的系數(shù)是( 。
A、84B、-84
C、126D、-126

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①命題“若x≠1,則x2-3x+2≠0”的逆否命題:“若x2-3x+2=0,則x=1”
②命題p:任意x∈R,x2+x+1≠0,則¬p:存在x∈R,x2+x+1=0
③“x>2”是“x2-3x+2>0”的充分不必要條件
④若p或q為真命題,則p,q均為真命題.
其中真命題的個數(shù)有( 。
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)與g(x)是定義在R上的可導(dǎo)函數(shù),則“f′(x)=g′(x)”是“f(x)=g(x)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sin2C=sin2A+sin2B則△ABC的形狀一定是(  )
A、等腰直角三角形
B、等腰三角形
C、直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,且它的一個焦點在拋物線y2=12x的準(zhǔn)線上,則此雙曲線的方程為(  )
A、
x2
5
-
y2
6
=1
B、
x2
7
-
y2
5
=1
C、
x2
3
-
y2
6
=1
D、
x2
4
-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2…(2n-1)(n∈N+)時,從“n=k到n=k+1”時,左邊應(yīng)增添的式子是( 。
A、2k+1
B、2k+3
C、2(2k+1)
D、2(2k+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-1|≥2的解集為(  )
A、{x|x≤-1或x≥3}
B、{x|x≥3}
C、{x|-1≤x≤3}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=4,E為PC的中點,M為AB的中點,點F在PA上,且AF=2FP.
(1)求證:CM∥平面BEF;
(2)求證:三棱錐F-ABE的體積.
(3)求BE與平面PAB所成角.

查看答案和解析>>

同步練習(xí)冊答案