【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)設,當時,若對任意,當時,恒成立,求實數(shù)的取值范圍.

【答案】(1)當時,上單調(diào)減,當時,在上,單調(diào)減,在上,單調(diào)增;(2).

【解析】試題分析:(1)直接利用函數(shù)與導數(shù)的關系,求出函數(shù)的導數(shù),再討論函數(shù)的單調(diào)性;
(2)利用導數(shù)求出的最小值、利用二次函數(shù)知識或分離常數(shù)法求出在閉區(qū)間上的最大值,然后解不等式求參數(shù).

試題解析:(Ⅰ)函數(shù)的定義域為,

,則)舍去

,則,

,則

所以當時,函數(shù)單調(diào)遞增;當時,函數(shù)單調(diào)遞減

(2)當時,

由(1)可知的兩根分別為,

,則

,則

可知函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

所以對任意的,有

,

由條件知存在,使

所以

即存在,使得

分離參數(shù)即得到時有解,

由于)為減函數(shù),故其最小值為,

從而

,所以實數(shù)的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的不等式.

(1)當時,解不等式;

(2)如果不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a2=b(b+c).
(1)求證:∠A=2∠B;
(2)若a= b,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a3=5,S15=225.數(shù)列{bn}是等比數(shù)列,b3=a2+a3 , b2b5=128(其中n=1,2,3,…). (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記cn=anbn , 求數(shù)列cn前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的焦點在x軸上,長軸長為4,離心率為 . (Ⅰ)求橢圓E的標準方程;
(Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣x,求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形.
(Ⅰ)求ω的值及函數(shù)f(x)的值域;
(Ⅱ)若x∈[0,1],求函數(shù)f(x)的值域;
(Ⅲ)若 ,且 ,求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長為 ,求圓C的方程.

查看答案和解析>>

同步練習冊答案