【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù),并將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,
【答案】(1)第二種生產(chǎn)方式的效率更高. 理由見解析
(2)80
(3)能
【解析】分析:(1)計算兩種生產(chǎn)方式的平均時間即可。
(2)計算出中位數(shù),再由莖葉圖數(shù)據(jù)完成列聯(lián)表。
(3)由公式計算出,再與6.635比較可得結果。
詳解:(1)第二種生產(chǎn)方式的效率更高.
理由如下:
(i)由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需時間至少80分鐘,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需時間至多79分鐘.因此第二種生產(chǎn)方式的效率更高.
(ii)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高.
(iii)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間低于80分鐘,因此第二種生產(chǎn)方式的效率更高.
(iv)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖8上的最多,關于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖7上的最多,關于莖7大致呈對稱分布,又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布的區(qū)間相同,故可以認為用第二種生產(chǎn)方式完成生產(chǎn)任務所需的時間比用第一種生產(chǎn)方式完成生產(chǎn)任務所需的時間更少,因此第二種生產(chǎn)方式的效率更高.學科*網(wǎng)
以上給出了4種理由,考生答出其中任意一種或其他合理理由均可得分.
(2)由莖葉圖知.
列聯(lián)表如下:
超過 | 不超過 | |
第一種生產(chǎn)方式 | 15 | 5 |
第二種生產(chǎn)方式 | 5 | 15 |
(3)由于,所以有99%的把握認為兩種生產(chǎn)方式的效率有差異.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在以為直徑的半圓周上,有異于的六個點,直徑上有異于的四個點.則:
(1)以這12個點(包括)中的4個點為頂點,可作出多少個四邊形?
(2)以這10個點(不包括)中的3個點為頂點,可作出多少個三角形?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關關系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時,該作物的年收獲量的相關數(shù)據(jù)如下:
X | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
(Ⅰ)求該作物的年收獲量y關于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每一個小正方形的面積為1,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.(注:年收獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計分別為 = = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,給出如下命題:
①是所在平面內一定點,且滿足,則是的垂心;
②是所在平面內一定點,動點滿足,,則動點一定過的重心;
③是內一定點,且,則;
④若且,則為等邊三角形,
其中正確的命題為_____(將所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)是否存在這樣的實數(shù),使對所有的均成立?若存在,求出適合條件的實數(shù)的值或范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的____條件;A是E的____條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},{bn}都是單調遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列{cn}.
(1)設數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設{an}的首項為1,各項為正整數(shù),bn=3n , 若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項和Sn;
(3)設bn=qn﹣1(q是不小于2的正整數(shù)),c1=b1 , 是否存在等差數(shù)列{an},使得對任意的n∈N* , 在bn與bn+1之間數(shù)列{an}的項數(shù)總是bn?若存在,請給出一個滿足題意的等差數(shù)列{an};若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com