【題目】已知橢圓的焦距為,點(diǎn)在橢圓上,且的最小值是為坐標(biāo)原點(diǎn)).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)已知?jiǎng)又本與圓相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】1;(2)存在

【解析】

1)根據(jù)焦距和橢圓的幾何意義即可求出橢圓標(biāo)準(zhǔn)方程;

2)分別對(duì)斜率不存在和斜率存在兩種情況討論,相切即圓心到直線距離等于半徑,即向量的數(shù)量積為零,進(jìn)行代數(shù)運(yùn)算即可求解.

1)因?yàn)?/span>的最小值是,所以,

因?yàn)闄E圓的焦距為,所以,即

所以,

故橢圓的標(biāo)準(zhǔn)方程是;

2)①當(dāng)直線的斜率不存在時(shí),

因?yàn)橹本與圓相切,所以直線的方程為

則直線與橢圓的交點(diǎn)為,

因?yàn)?/span>,所以,所以,即,

②當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,.

聯(lián)立,整理得,

,

因?yàn)?/span>在直線上,所以

,代入上式,得

因?yàn)?/span>,所以,即,

因?yàn)閯?dòng)直線與圓相切,所以,所以,即,

綜上,存在,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)設(shè)PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形的邊長為2,,分別為,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,平面平面.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)說法,其中正確的是( )

A.命題“若,則”的否命題是“若,則

B.”是“雙曲線的離心率大于”的充要條件

C.命題“,”的否定是“

D.命題“在中,若,則是銳角三角形”的逆否命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解某產(chǎn)品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過0.1萬元,則認(rèn)為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

參考公式:,,;參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線Cy2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,長軸的左、右端點(diǎn)分別為,.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于PQ兩點(diǎn),直線交于S,試問:當(dāng)m變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫出這條直線的方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)上.

(1)求橢圓的方程;

(2)若直線與橢圓相交于,兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案