已知為坐標(biāo)原點,點,點滿足條件,則的最大值為_____________。

 

【答案】

【解析】

試題分析:根據(jù)題意可知,由于為坐標(biāo)原點,點,點滿足條件,則可知=,那么只要確定好區(qū)域為三角形區(qū)域,當(dāng)過交點(1,0)時,目標(biāo)函數(shù)最大且為1,故答案為1.

考點:簡單的線性規(guī)劃最優(yōu)解

點評:解決該試題的關(guān)鍵是利用不等式組表示的平面區(qū)域,然后根據(jù)向量的數(shù)量積公式表示,通過平移法得到最值。屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆遼寧省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知為坐標(biāo)原點,點分別在軸上運(yùn)動,且=8,動點滿足 =,設(shè)點的軌跡為曲線,定點為直線交曲線于另外一點

(1)求曲線的方程;

(2)求 面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖北省武漢市高二下期末文科數(shù)學(xué)試卷(解析版) 題型:選擇題

.已知,,為坐標(biāo)原點,點在第四象限內(nèi),且,設(shè),則的值是(    )

.           .         .          . 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省四地六校聯(lián)考高三上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中.設(shè).

(I)若,,求方程在區(qū)間內(nèi)的解集;

(II)若點是曲線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(III)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.【說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.】

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中.設(shè).

(1)若,,求方程在區(qū)間內(nèi)的解集;

(2)若點是過點且法向量為的直線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

 

查看答案和解析>>

同步練習(xí)冊答案