(本題滿分18分)已知:函數(shù) ,在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
(1)求、的值及函數(shù)的解析式;
(2)若不等式時恒成立,求實數(shù)的取值范圍;
(3)如果關(guān)于的方程有三個相異的實數(shù)根,求實數(shù)的取值范圍.
(1);(2) ;(3)時滿足題設(shè).
(1)由題意得:函數(shù) 的對稱軸為,要討論得函數(shù)上的單調(diào)性,又函數(shù)在區(qū)間上有最大值4,最小值1,求出、的值;
(2)不等式時恒成立,即恒成立,換元求出右邊的最小值即可;
(3)關(guān)于的方程有三個相異的實數(shù)根,令,則  有兩個實根,一個根大于0且小于1,另一個根大于1.根據(jù)二次函數(shù)與二次方程的關(guān)系列出滿足的條件求解。
解:(1),由題意得:
 , 或  (舍去)
,…………4分
…………5分
(2)不等式,即……9分
設(shè),,,…………11分
(3),即
,則   …………13分
記方程的根為、,當(dāng)時,原方程有三個相異實根,
,由題可知,
.…………16分
       時滿足題設(shè).…………18分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)取得極值
(1)求的單調(diào)區(qū)間(用表示);
(2)設(shè),,若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-(a+2)x+alnx(a∈R)。
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=4,y=f(x)的圖像與直線y=m有三個交點,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)是(0,+∞)上的非負可導(dǎo)函數(shù),且,對任意正數(shù)a,b,若a<b,
則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三次函數(shù),
(1)若函數(shù)過點且在點處的切線方程是,求函數(shù)的解析式;
(2)在(1)的條件下,若對于區(qū)間上任意兩個自變量的值,都有,求實數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)= x/4+ln(x-2)/(x-4),(1)求函數(shù)f)x)的定義域和極值;(2)若函數(shù)(fx)在區(qū)間[a2-5a,8-3a]上為增函數(shù),求實數(shù)a的取值范圍;(3)函數(shù)f(x)的圖象是否為中心對稱圖形?若是請指出對稱中心,并證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù).
(Ⅰ)若,求實數(shù)的取值范圍;
(Ⅱ)判斷函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f'(x)是f(x)的導(dǎo)函數(shù),f'(x)的圖象如右圖所示,則f(x)的圖象只可能是(   )
(A)       (B)      (C)     (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),求導(dǎo)函數(shù),并確定的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案