精英家教網 > 高中數學 > 題目詳情
等差數列{an}的公差為
1
2
,且前100項和S100=145,求a1+a3+a5+…+a99的值.
考點:等差數列的前n項和
專題:等差數列與等比數列
分析:設S奇數項=a1+a3+a5+…+a99,S偶數項=a2+a4+…+a100.根據題意可得:S奇數項+S偶數項=145,S偶數項-S奇數項=50×
1
2
=25.解出即可.
解答: 解:S奇數項=a1+a3+a5+…+a99,S偶數項=a2+a4+…+a100
∵等差數列{an}的公差為
1
2
,且前100項和S100=145,
∴S奇數項+S偶數項=145,S偶數項-S奇數項=50×
1
2
=25.
∴S奇數項=60.
點評:本題考查了等差數列的前n項的計算公式及其性質,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的對邊長分別為a、b、c,sinA、sinB、sinC成等比數列,且c=2a,則cosB的值為( 。
A、
1
4
B、
3
4
C、
2
4
D、
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=cosx+sinx,問是否存在α∈(0,
π
2
),使f(x+α)=f(x+3α)恒成立?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C關于y軸對稱,經過點(1,0)且被x軸分成兩段弧長比為1:2,則圓C的方程為( 。
A、(x±
3
3
)2+y2=
4
3
B、(x±
3
3
2+y2=
1
3
C、x2+(y±
3
3
2=
4
3
D、x2+(y±
3
3
2=
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

某校高三年級在5月份進行一次高考模擬考試,考生的總分成績分布情況如表所示:
 [0,400)[400,480)[480,550)[550,750]
文科考生8014512040
理科考生70255xy
已知該?忌,成績在[400,550)中的人數為700,且不低于480分的文科、理科考生人數之比為2:3.
(Ⅰ)求x,y的值;
(Ⅱ)若按文、理科用分層抽樣方法在不低于550分的考生中隨機抽取5名考生進行質量分析,并請這5名同學中的3名同學進行方法介紹,求文、理科考生都有的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(0.027) -
1
3
-(-
1
7
-2+(2
7
9
 
1
2
-(
2
-1
0=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O的方程為x2+y2=4.
(1)求過點P(1,2)且與圓O相切的直線l的方程;
(2)直線m過點P(1,2),且與圓O交于A、B兩點,若|AB|=2
3
,求直線m的方程;
(3)圓O上有一動點M(x0,y0),
ON
=(2x0,y0)
,若向量
OQ
=2
OM
+
1
2
ON
,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=
x-
1-x
x+|1-x|
的值域為(  )
A、(-∞,1)
B、(-∞,1]
C、(0,1]
D、[0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C方程為(x-3)2+y2=12,定點A(-3,0),P是圓上任意一點,線段AP的垂直平分線l和直線CP相交于點Q.
(Ⅰ)當點P在圓上運動時,求點Q的軌跡E的方程.
(Ⅱ)過點C傾斜角為30°的直線交曲線E于A、B兩點,求|AB|.

查看答案和解析>>

同步練習冊答案