【題目】設(shè) ,且 ,求證:a3+b3>a2b+ab2 .(提示:a3+b3=(a+b)(a2-ab+b2) )
【答案】【解答】解:方法一(分析法):
要證 a3+b3>a2b+ab2 成立,
即需證(a+b)(a2-ab+b2) >ab(a+b) 成立.
又因 a+b>0 ,
故只需證a2-ab+b2>ab 成立,
即需證 a2-ab+b2>0 成立,
即需證 (a-b)2>0 成立.
而依題設(shè) ,則 (a-b)2>0 顯然成立.
由此命題得證.
方法二(綜合法):
.
注意到 , a+b>0 ,由上式即得
(a+b)(a2-ab+b2) >ab(a+b) .
所以 a3+b3>a2b+ab2 .
【解析】本題主要考查了分析法與綜合法,解決問(wèn)題的關(guān)鍵是根據(jù)分析法、綜合法結(jié)合所學(xué)基本不等式進(jìn)行分析證明即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列 的前 項(xiàng)和為 ,且 ,數(shù)列 為等差數(shù)列,且 .
(1)求 ;
(2)求數(shù)列 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量 , , 滿足| |=2,| + |=6,| |=| |,且 ⊥ ,則| ﹣ |的取值范圍為( )
A.[4,8]
B.[4 ,8 ]
C.(4,8)
D.(4 ,8 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明:已知a,b均為有理數(shù),且 和 都是無(wú)理數(shù),求證: 是無(wú)理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,點(diǎn)M是A1D1的中點(diǎn),點(diǎn)N是CD的中點(diǎn),用反證法證明直線BM與直線A1N是兩條異面直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,△ABC為直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求證:AD⊥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定圓M: =16,動(dòng)圓N過(guò)點(diǎn)F 且與圓M相切,記圓心N的軌跡為E.
(I)求軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)A,B,C在E上運(yùn)動(dòng),A與B關(guān)于原點(diǎn)對(duì)稱,且|AC|=|CB|,當(dāng)△ABC的面積最小時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)坐標(biāo)為(2,0),離心率為 .
(1)求這個(gè)橢圓的方程;
(2)若這個(gè)橢圓左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 過(guò)F1且斜率為1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意的正整數(shù)n都有2Sn=6﹣an , 數(shù)列{bn}滿足b1=2,且對(duì)任意的正整數(shù)n都有 ,且數(shù)列 的前n項(xiàng)和Tn<m對(duì)一切n∈N*恒成立,則實(shí)數(shù)m的小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com