【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意的正整數(shù)n都有2Sn=6﹣an , 數(shù)列{bn}滿足b1=2,且對(duì)任意的正整數(shù)n都有 ,且數(shù)列 的前n項(xiàng)和Tn<m對(duì)一切n∈N*恒成立,則實(shí)數(shù)m的小值為 .
【答案】1
【解析】解:當(dāng)n=1時(shí),2S1=6﹣a1 , ∴a1=6,
∵2Sn=6﹣an ,
∴2Sn﹣1=6﹣an﹣1 ,
∴2an=﹣an+an﹣1 ,
∴3an=an﹣1 ,
∴數(shù)列{an}以6為首項(xiàng),以 為公差的等差數(shù)列,
∴an=6×( )n﹣1 ,
∴ =2n,
∴b2﹣b1=2,
b3﹣b2=4,
…
bn﹣bn﹣1=2(n﹣1),
累加可得bn﹣b1=2(1+2+3+…+n﹣1)=n(n﹣1),
∴bn=n(n﹣1)+2,
∴ = ≤ = ﹣ ,n≥2,
∴Tn= + + +…+ ≤ + + +…+ = +1﹣ + ﹣ +…+ ﹣ = ﹣ <1,n≥2時(shí),即Tn<1,
當(dāng)n=1時(shí),T1= <1,
綜上所述Tn<1,
∴m的最小值為1
所以答案是:1.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣(a﹣1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},則函數(shù)f(x)在R上是增函數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 = , = ,且
(1)求 及| |
(2)若f(x)= ﹣2λ| |的最小值為 ,求正實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f′(x)>1﹣f(x),f(0)=6,f′(x)是f(x)的導(dǎo)函數(shù),則不等式 (其中e為自然對(duì)數(shù)的底數(shù))的解集為( )
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(1,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若 ,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x=﹣1是函數(shù)y=f(x)的一個(gè)極值點(diǎn),試判斷此時(shí)函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ: =1(a>b>0)的右焦點(diǎn)為(2 ,0),且橢圓Γ上一點(diǎn)M到其兩焦點(diǎn)F1 , F2的距離之和為4 .
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓Γ交于不同兩點(diǎn)A,B,且|AB|=3 .若點(diǎn)P(x0 , 2)滿足| |=| |,求x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)當(dāng)a=1的值時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為等邊三角形,AA1=AB=6,D為AC的中點(diǎn).
(1)求證:直線AB1∥平面BC1D;
(2)求證:平面BC1D⊥平面ACC1A1;
(3)求三棱錐C﹣BC1D的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com