【題目】如圖,在多面體中,底面是邊長(zhǎng)為2的菱形,,四邊形是矩形,分別是的中點(diǎn).

(1)求證:平面平面;

(2)若平面平面,,求平面與平面所成角的余弦值.

【答案】(1)見解析.

(2) .

【解析】分析:(1)連接于點(diǎn),由三角形中位線定理可得,由線面平行的判定定理可得平面,同理平面從而可得結(jié)論;(2)過點(diǎn)在平面中作軸,建立空間直角坐標(biāo)系,分別利用向量垂直數(shù)量積為零列方程組,求出. 平面與平面法向量,由空間向量夾角余弦公式可得結(jié)果.

詳解(1)連接于點(diǎn),顯然,平面平面,可得平面,同理平面,平面可得:平面平面.

(2)過點(diǎn)在平面中作,顯然軸、、兩兩垂直,如圖所示建立空間直角坐標(biāo)系.,,,.設(shè)平面與平面法向量分別為.

,設(shè),設(shè).

,綜上:面與平面所成角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的側(cè)面是菱形,平面平面,直線與平面所成角為,,的中點(diǎn).

(1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCDAD=PD=2,

E、F分別為CD、PB的中點(diǎn).

1)求證:EF⊥平面PAB

2)設(shè),求直線AC與平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)任作一直線交拋物線兩點(diǎn),過兩點(diǎn)分別作拋物線的切線

(Ⅰ)記的交點(diǎn)的軌跡為,求的方程;

(Ⅱ)設(shè)與直線交于點(diǎn)(異于點(diǎn)),且.問是否為定值?若為定值,請(qǐng)求出定值.若不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上奇函數(shù),對(duì)任意實(shí)數(shù)都有,當(dāng)時(shí),,則 ( )

A. -1B. 1C. 0D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為建立健全國(guó)家學(xué)生體質(zhì)健康監(jiān)測(cè)評(píng)價(jià)機(jī)制,激勵(lì)學(xué)生積極參加身體鍛煉,教育部印發(fā)《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級(jí)學(xué)生的《標(biāo)準(zhǔn)》測(cè)試工作,并根據(jù)學(xué)生每個(gè)學(xué)期總分評(píng)定等級(jí).某校決定針對(duì)高中學(xué)生,每學(xué)期進(jìn)行一次體質(zhì)健康測(cè)試,以下是小明同學(xué)六個(gè)學(xué)期體質(zhì)健康測(cè)試的總分情況.

學(xué)期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));

(2)在第六個(gè)學(xué)期測(cè)試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級(jí),已知小明所在的學(xué)習(xí)小組10個(gè)同學(xué)有6個(gè)被評(píng)定為優(yōu)秀,測(cè)試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機(jī)的給小組內(nèi)4個(gè)同學(xué)打電話詢問對(duì)方成績(jī),優(yōu)秀的同學(xué)有人,求的分布列和期望.

參考公式: ,;

相關(guān)系數(shù)

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面與平面、平面都相交,則這三個(gè)平面可能的交線有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義域?yàn)?/span>R上的奇函數(shù),當(dāng)x0時(shí),fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案