【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

1)若,直線與曲線相交于兩點(diǎn),求;

2)若,求曲線上的點(diǎn)到直線的距離的最小值.

【答案】(1)(2)

【解析】

1)將曲線的參數(shù)方程化為直角坐標(biāo)方程,代入直線的參數(shù)方程整理可求得,由此可得坐標(biāo),利用兩點(diǎn)間距離公式可求得結(jié)果;

2)根據(jù)曲線的參數(shù)方程可設(shè)其上點(diǎn)坐標(biāo)為,將直線化為普通方程,利用點(diǎn)到直線距離公式可將問題化為三角函數(shù)最值求解問題,由此求得結(jié)果.

1)由參數(shù)方程可得曲線的直角坐標(biāo)方程為:

當(dāng)時(shí),直線的參數(shù)方程為為參數(shù))

設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為

代入曲線的直角坐標(biāo)方程后整理得:

解得:,

設(shè),則,

2)設(shè)曲線上的點(diǎn)的坐標(biāo)為

當(dāng)時(shí),直線的直角坐標(biāo)方程為:

曲線上的點(diǎn)到直線的距離

(當(dāng)且僅當(dāng)時(shí)取等號(hào))

曲線上的點(diǎn)到直線的距離的最小值為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)為,過(M不過橢圓的頂點(diǎn)和中心)且斜率為k直線l交橢圓于兩點(diǎn),與y軸交于點(diǎn)N,且.

(1)若直線l過點(diǎn),求的周長(zhǎng);

(2)若直線l過點(diǎn),求線段的中點(diǎn)R的軌跡方程;

(3)求證:為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在,實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在試驗(yàn)地隨機(jī)抽選各株,對(duì)每株進(jìn)行綜合評(píng)分(評(píng)分的高低反映花苗品質(zhì)的高低),將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖:

1)求圖中的值,并求綜合評(píng)分的中位數(shù);

2)記綜合評(píng)分為及以上的花苗為優(yōu)質(zhì)花苗.填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

乙培育法

合計(jì)

附:下面的臨界值表僅供參考.

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,記集合.

1)對(duì)于數(shù)列,寫出集合;

2)若,是否存在,使得?若存在,求出一組符合條件的;若不存在,說明理由.

3)若,把集合中的元素從小到大排列,得到的新數(shù)列為,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)證明:,都有;

2)若函數(shù)有且只有一個(gè)零點(diǎn),求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對(duì)于任意,函數(shù)的圖像在上都有三個(gè)不同交點(diǎn).

1)寫出的解析式,并求函數(shù)的最大值及此時(shí)的x的取值;

2)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,且,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保部門要對(duì)所有的新車模型進(jìn)行廣泛測(cè)試,以確定它的行車?yán)锍痰牡燃?jí),下表是對(duì)100輛新車模型在一個(gè)耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y(cè)試結(jié)果.

分組

頻數(shù)

6

10

20

30

18

12

4

1)做出上述測(cè)試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

2)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間的新車模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車模型行車?yán)锍淘?/span>內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的一點(diǎn)到其左頂點(diǎn)的距離為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(與點(diǎn)不重合),若以為直徑的圓經(jīng)過點(diǎn),試證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨中央、國(guó)務(wù)院歷來高度重視青少年的健康成長(zhǎng).“少年強(qiáng)則國(guó)強(qiáng)”,青少年身心健康、體魄強(qiáng)健、意志堅(jiān)強(qiáng)、充滿活力,是一個(gè)民族旺盛生命力的體現(xiàn),是社會(huì)文明進(jìn)步的標(biāo)志,是國(guó)家綜合實(shí)力的重要方面.全面實(shí)施《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,把健康素質(zhì)作為評(píng)價(jià)學(xué)生全面健康發(fā)展的重要指標(biāo),是新時(shí)代的要求.《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》有一項(xiàng)指標(biāo)是學(xué)生體質(zhì)指數(shù)(),其計(jì)算公式為:,當(dāng)時(shí),認(rèn)為“超重”,應(yīng)加強(qiáng)鍛煉以改善.某高中高一、高二年級(jí)學(xué)生共2000人,人數(shù)分布如表(a.為了解這2000名學(xué)生的指數(shù)情況,從中隨機(jī)抽取容量為160的一個(gè)樣本.

表(a

性別

年級(jí)

男生

女生

合計(jì)

高一年級(jí)

550

650

1200

高二年級(jí)

425

375

800

合計(jì)

975

1025

2000

1)為了使抽取的160個(gè)學(xué)生更具代表性,宜采取分層抽樣,試給出一個(gè)合理的分層抽樣方案,并確定每層應(yīng)抽取出的學(xué)生人數(shù);

2)分析這160個(gè)學(xué)生的值,統(tǒng)計(jì)出“超重”的學(xué)生人數(shù)分布如表(b.

表(b

性別

年級(jí)

男生

女生

高一年級(jí)

4

6

高二年級(jí)

2

4

(ⅰ)試估計(jì)這2000名學(xué)生中“超重”的學(xué)生數(shù);

(ⅱ)對(duì)于該校的2000名學(xué)生,應(yīng)用獨(dú)立性檢驗(yàn)的知識(shí),可分析出性別變量與年級(jí)變量哪一個(gè)與“是否超重”的關(guān)聯(lián)性更強(qiáng).應(yīng)用卡方檢驗(yàn),可依次得到的觀測(cè)值,試判斷的大小關(guān)系.(只需寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案