精英家教網 > 高中數學 > 題目詳情

【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在,實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在試驗地隨機抽選各株,對每株進行綜合評分(評分的高低反映花苗品質的高低),將每株所得的綜合評分制成如圖所示的頻率分布直方圖:

1)求圖中的值,并求綜合評分的中位數;

2)記綜合評分為及以上的花苗為優(yōu)質花苗.填寫下面的列聯(lián)表,并判斷是否有的把握認為優(yōu)質花苗與培育方法有關.

優(yōu)質花苗

非優(yōu)質花苗

合計

甲培育法

乙培育法

合計

附:下面的臨界值表僅供參考.

(參考公式:,其中.

【答案】1,;(2)是,詳見解析

【解析】

(1)由頻率分布直方圖中小長方形的面積和為1可以求得;由中位數兩側頻率均為0.5可求出中位數;

(2)由題意先補填列聯(lián)表,然后由列聯(lián)表求,再進行比較判斷.

解:(1)由

解得.

令得分中位數為,由,

解得.

故綜合評分的中位數為.

2)列聯(lián)表如下表所示:

優(yōu)質花苗

非優(yōu)質花苗

合計

甲培育法

乙培育法

合計

可得.

所以,有的把握認為優(yōu)質花苗與培育方法有關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.

(1)設P是上的一點,且AP⊥BE,求∠CBP的大。

(2)當AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求的單調區(qū)間與極值;

2)當函數有兩個極值點時,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,內角的對邊分別為,已知

;

,且面積,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是_________(請把你認為正確說法的序號都填上).

1)函數的最小正周期為

2)若命題,使得,則,均有

3中,的充要條件;

4)已知點N所在平面內,且,則點N的重心;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現為保護環(huán)境,污水需經處理才能排放.兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據經驗公式,建廠的費用為(萬元),表示污水流量;鋪設管道的費用(包括管道費)(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為、、兩城鎮(zhèn)連接污水處理廠的管道總長為千米.假定:經管道輸送的污水流量不發(fā)生改變,污水經處理后直接排入河中.請解答下列問題(結果精確到):

1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?

2)考慮聯(lián)合建廠可能節(jié)約總投資,設城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費用的函數關系式,并求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用平面截圓柱面,當圓柱的軸與所成角為銳角時,圓柱面的截面是一個橢圓,著名數學家創(chuàng)立的雙球實驗證明了上述結論.如圖所示,將兩個大小相同的球嵌入圓柱內,使它們分別位于的上方和下方,并且與圓柱面和均相切.給出下列三個結論:

兩個球與的切點是所得橢圓的兩個焦點;

若球心距,球的半徑為,則所得橢圓的焦距為2;

當圓柱的軸與所成的角由小變大時,所得橢圓的離心率也由小變大.

其中,所有正確結論的序號是(

A.B.C.①②D.①②

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數).

1)若,直線與曲線相交于兩點,求;

2)若,求曲線上的點到直線的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點是雙曲線上的動點,是雙曲線的焦點,M的平分線上一點,且,某同學用以下方法研究:延長于點N,可知為等腰三角形,且M的中點,得,類似地:點是橢圓上的動點,橢圓的焦點,M的平分線上一點,且的取值范圍是______

查看答案和解析>>

同步練習冊答案