分析 (1)直接利用平方關系求得sinx的值;
(2)利用同角三角函數基本關系式及倍角公式求得tan2x,再由兩角和的正切得答案.
解答 解:(1)∵x∈($\frac{π}{2},π$),
∴sinx=$\sqrt{1-co{s}^{2}x}=\sqrt{1-(-\frac{\sqrt{2}}{10})^{2}}=\frac{7\sqrt{2}}{10}$;
(2)由(1)得sinx=$\frac{7\sqrt{2}}{10}$,
∴$tanx=\frac{sinx}{cosx}=-7$,
則tan2x=$\frac{2tanx}{1-ta{n}^{2}x}=\frac{2×(-7)}{1-(-7)^{2}}=\frac{7}{24}$.
∴$tan(2x+\frac{π}{4})=\frac{tan2x+tan\frac{π}{4}}{1-tan2xtan\frac{π}{4}}$=$\frac{\frac{7}{24}+1}{1-\frac{7}{24}}=\frac{31}{17}$.
點評 本題考查兩角和與差的正切函數,考查了同角三角函數基本關系式的應用,是基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 64 | B. | 100 | C. | 36 | D. | 136 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com