6.某兒童節(jié)在“六一”兒童節(jié)推出了一項(xiàng)趣味活動(dòng).參加活動(dòng)的兒童需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù).記兩次記錄的數(shù)分別為x,y.獎(jiǎng)勵(lì)規(guī)則如下:
①若xy≤3,則獎(jiǎng)勵(lì)玩具一個(gè);
②若xy≥8,則獎(jiǎng)勵(lì)水杯一個(gè);
③其余情況獎(jiǎng)勵(lì)飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請(qǐng)比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

分析 (Ⅰ)確定基本事件的概率,利用古典概型的概率公式求小亮獲得玩具的概率;
(Ⅱ)求出小亮獲得水杯與獲得飲料的概率,即可得出結(jié)論.

解答 解:(Ⅰ)兩次記錄的數(shù)為(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16個(gè),
滿足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5個(gè),
∴小亮獲得玩具的概率為$\frac{5}{16}$;
(Ⅱ)滿足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6個(gè),∴小亮獲得水杯的概率為$\frac{6}{16}$;
小亮獲得飲料的概率為1-$\frac{5}{16}$-$\frac{6}{16}$=$\frac{5}{16}$,
∴小亮獲得水杯大于獲得飲料的概率.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查古典概型,確定基本事件的個(gè)數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某網(wǎng)店統(tǒng)計(jì)了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店
①第一天售出但第二天未售出的商品有16種;
②這三天售出的商品最少有29種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)(3,9)在函數(shù)f(x)=1+ax的圖象上,則f(x)的反函數(shù)f-1(x)=log2(x-1)(x>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.6名學(xué)生中,3人只會(huì)獨(dú)唱,3人只會(huì)跳舞,從6名學(xué)生中隨機(jī)選取三人,則選取的這三名同學(xué)能排演一個(gè)由1人獨(dú)唱,2人伴舞的節(jié)目的概率為( 。
A.$\frac{2}{5}$B.$\frac{9}{20}$C.$\frac{4}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2$\sqrt{2}$,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是(  )
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)A(-2,0),圓C:x2-4x+y2-4y+4=0,過點(diǎn)A的直線l與圓C相交于兩個(gè)不同的點(diǎn)P,Q,線段PQ的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)M的軌跡方程;
(2)求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直線2x-y+m=0與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,且△OAB的面積是4.
(1)求m的值;
(2)求點(diǎn)A和點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=lg(-3x2+7x+10)的定義域?yàn)椋?1,$\frac{10}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=sin[$\frac{π}{3}$(x+1)]-$\sqrt{3}$cos[$\frac{π}{3}$(x+1)],則f(1)+f(2)+f(3)+f(4)+…+f(2015)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案