已知三視圖如圖所示,畫出原幾何體.
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由已知中的三視圖,可得該幾何體是兩個三棱錐組成的組合體,進而可得其直觀圖.
解答: 解:由已知中的三視圖,可得該幾何體是兩個三棱錐組成的組合體,
故原幾何的直觀圖如下圖所示:
點評:本題考查的知識點是簡單幾何體的三視圖,熟練掌握空間幾何體的三視圖的畫法,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=x2-1(x∈R)},P={x|y=
3-x2
,x∈R},則M∩P=( 。
A、{(-
2
,1),(
2
,1)}
B、{t|1≤t≤
3
}
C、{t|-1≤t≤
3
}
D、{t|0≤t≤
3
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,設A(x1,y1),B(x2,y2)是橢圓
x2
m
+
y2
4
=1(m>4)上任意兩點,已知向量
p
=(
x1
m
y1
2
),
q
=(
x2
m
,
y2
2
),若
p
q
的夾角為
π
2
且橢圓的離心率e=
3
2

(1)若直線AB過橢圓的焦點F(c,0)(c為半焦距),求直線AB的斜率k的值;
(2)△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=x-1被橢圓
x2
4
+y2=1截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+b
2x+1+a
是奇函數(shù).
(1)求a、b的值;
(2)用定義證明:函數(shù)f(x)在R上是減函數(shù);
(3)已知不等式f(logm
3
4
)+f(-1)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,曲線C的參數(shù)方程為
x=2cosθ
y=
3
sinθ
(θ為參數(shù))
以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的坐標方程為p(sinϕ-
3
cosϕ)+
3
=0,則直線l截曲線C所得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x-|x2-1|-1的零點個數(shù)是(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且a≠b,比較
a2
b
+
b2
a
與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC是邊長為2
3
的正三角形,EF為△ABC的外接圓O的一條直徑,M為△ABC的邊上的動點,則
ME
FM
的最大值為
 

查看答案和解析>>

同步練習冊答案