11.已知i為虛數(shù)單位,則復數(shù)$\frac{1+i}{i}$=(  )
A.1+iB.1-iC.1+$\frac{i}{2}$D.1-$\frac{i}{2}$

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:$\frac{1+i}{i}$=$\frac{(1+i)(-i)}{-{i}^{2}}=1-i$,
故選:B.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知正四棱臺的上、下底面面積分別為4、16,一側(cè)面面積為12,分別求該棱臺的斜高、高、側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱錐S-ABC中,AS=AB,CS=CB,點E,F(xiàn),G分別是棱SA,SB,SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)SB⊥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.給出下列命題:
①“若a≥0,則x2+x-a=0有實根”的逆否命題為真命題:
②命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是a≥4;
③命題“?x∈R,使得x2-2x+1<0”的否定是真命題;
④命題p:函數(shù)y=ex+e-x為偶函數(shù);命題q:函數(shù)y=ex-e-x在R上為增函數(shù),則p∧(?q)為真命題.期中正確命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為x萬元時,銷售量t萬件滿足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a,a為正常數(shù)).現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+$\frac{20}{t}$)萬元/萬件.
(I)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(II)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(1)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試預(yù)測加工10個零件需要多少小時?
(3)此回歸方程擬合效果如何?
零件個數(shù)x(個)2345
加工時

]y(小時)
2.5344.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知曲線f(x)=x2-1上兩點A(2,3),B(2+△x,3△y),當△x=0.1,求割線AB斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.給定兩個命題,命題p:對任意實數(shù)x都有ax2>-ax-1恒成立,命題q:關(guān)于x的方程x2-x+a=0有實數(shù)根.若“p或q”為真命題,“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{3}{x},x>0}\\{{x}^{2}-\frac{1}{4},x≤0}\end{array}\right.$,則方程f(x)=2的所有實數(shù)根之和為$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案