14.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,則此三角形有幾個(gè)解( 。
A.0B.1C.2D.不確定

分析 運(yùn)用正弦定理,求得sinC,再由三角形的邊角關(guān)系,即可得到三角形的個(gè)數(shù).

解答 解:b=$\sqrt{2},c=1,B={45°}$,
由正弦定理$\frac{sinB}$=$\frac{c}{sinC}$,
可得sinC=$\frac{csinB}$=$\frac{1×sin45°}{\sqrt{2}}$=$\frac{1}{2}$,
由b>c,可得B>C,
則C為銳角,且C=30°,A=105°,
則此三角形有一個(gè)解.
故選:B.

點(diǎn)評(píng) 本題考查正弦定理的運(yùn)用,考查三角形的邊角關(guān)系,以及運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$(x>1)的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≤m\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最大值為(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow a=(cosx,sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的零點(diǎn);
(2)若△ABC的三內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且f(A)=1,求$\frac{b+c}{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,1,0),$\overrightarrow b=(1,-2,2)$,且$k\overrightarrow a$與$\overrightarrow a+\overrightarrow b$互相垂直,則k的值為( 。
A.2B.0C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某超市從2017年1月甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨(dú)立銷(xiāo)售且日銷(xiāo)售量相互獨(dú)立.
(Ⅰ)寫(xiě)出頻率分布直方圖(甲)中的a值;記甲種酸奶與乙種酸奶日銷(xiāo)售量(單位:箱)的方差分別為S12與S22,試比較S12與S22的大小(只需寫(xiě)出結(jié)論);
(Ⅱ)估計(jì)在未來(lái)的某一天里,甲、乙兩種酸奶的銷(xiāo)售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列四個(gè)圖形是兩個(gè)變x,y的散點(diǎn)圖,其中具有線(xiàn)性相關(guān)關(guān)系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.身高不同的7個(gè)人排成一排,要求正中間的個(gè)子最高,從中間向兩邊看一個(gè)比一個(gè)矮,則不同的排法有(  )種( 。
A.2B.8C.20D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,a=4,b=5,c=6,則$\frac{sinA+sinB}{2sinC}$=$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案