19.某超市從2017年1月甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.
(Ⅰ)寫出頻率分布直方圖(甲)中的a值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為S12與S22,試比較S12與S22的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)估計(jì)在未來(lái)的某一天里,甲、乙兩種酸奶的銷售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率.

分析 (Ⅰ)利用頻率分布直方圖的性質(zhì)即可得出.
(Ⅱ)設(shè)事件A:在未來(lái)的某一天里,甲種酸奶的銷售量不高于20箱;事件B:在未來(lái)的某一天里,乙種酸奶的銷售量不高于20箱;事件C:在未來(lái)的某一天里,甲、乙兩種酸奶的銷售量恰好一個(gè)高于20箱且另一個(gè)不高于20箱.求出P(A),P(B),P(C).

解答 解:(Ⅰ)由各小矩形面積和為1,
得(0.010+a+0.020+0.025+0.030)×10=1,
解得a=0.015,
由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,主要集中在20-30箱,
故s12>s22
(II)設(shè)事件A:在未來(lái)的某一天里,甲種酸奶的銷售量不高于20箱;
事件B:在未來(lái)的某一天里,乙種酸奶的銷售量不高于20箱;
事件C:在未來(lái)的某一天里,甲、乙兩種酸奶的銷售量恰好一個(gè)高于20箱且另一個(gè)不高于20箱.
則P(A)=0.20+0.10=0.3,P(B)=0.10+0.20=0.3.
∴P(C)=P(A)P($\overline{B}$)+P($\overline{A}$)P(B)=0.42.
∴甲、乙兩種酸奶的銷售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率0.42.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的方差,頻率分布直方圖,獨(dú)立重復(fù)試驗(yàn)概率的求法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知三被錐S-ABC的體積為$\frac{4\sqrt{5}}{3}$,底面△ABC是邊長(zhǎng)為2的正三角形,且所有頂點(diǎn)都在直徑為SC的球面上.則此球的半徑為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若直線ax+by=1(a,b都是正實(shí)數(shù))與圓x2+y2=4相交于A,B兩點(diǎn),當(dāng)OA⊥OB(O是坐標(biāo)點(diǎn))時(shí),ab的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.過雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦點(diǎn)F引圓x2+y2=9的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于點(diǎn)P,若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,則此三角形有幾個(gè)解( 。
A.0B.1C.2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某商場(chǎng)出售三種品牌電腦,現(xiàn)存分別是60臺(tái)、36臺(tái)和24臺(tái),用分層抽樣的方法從中抽取10臺(tái)進(jìn)行檢測(cè),這三種品牌的電腦依次應(yīng)抽取的臺(tái)數(shù)是( 。
A.6,3,1B.5,3,2C.5,4,1D.4,3,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足a1=2,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*),則an=$\frac{2}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.十件有編號(hào)的零件,安排4個(gè)工人加工,每人分別加工2、2、3、3件,則安排方法有151200種(用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$\overrightarrow a=({1,t})$,$\overrightarrow b=(-5,\;2\;)$且$\overrightarrow a•\overrightarrow b=1$,求當(dāng)k為何值時(shí),
(1)k$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$垂直;
(2)k$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案