1.已知橢圓C的兩個頂點分別為A(-2,0),B(2,0),焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點D為x軸上一點,過D作x軸的垂線交橢圓C于不同的兩點M,N,過D作AM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.

分析 (Ⅰ)由題意設橢圓方程,由a=2,根據(jù)橢圓的離心率公式,即可求得c,則b2=a2-c2=1,即可求得橢圓的方程;
(Ⅱ)由題意分別求得DE和BN的斜率及方程,聯(lián)立即可求得E點坐標,根據(jù)三角形的相似關系,即可求得$\frac{丨BE丨}{丨BN丨}$=$\frac{4}{5}$,因此可得△BDE與△BDN的面積之比為4:5.

解答 解:(Ⅰ)由橢圓的焦點在x軸上,設橢圓方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
則a=2,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,則c=$\sqrt{3}$,
b2=a2-c2=1,
∴橢圓C的方程$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)證明:設D(x0,0),(-2<x0<2),M(x0,y0),N(x0,-y0),y0>0,
由M,N在橢圓上,則$\frac{{x}_{0}^{2}}{4}+{y}_{0}^{2}=1$,則x02=4-4y02,
則直線AM的斜率kAM=$\frac{{y}_{0}-0}{{x}_{0}+2}$=$\frac{{y}_{0}}{{x}_{0}+2}$,直線DE的斜率kDE=-$\frac{{x}_{0}+2}{{y}_{0}}$,
直線DE的方程:y=-$\frac{{x}_{0}+2}{{y}_{0}}$(x-x0),
直線BN的斜率kBN=$\frac{-{y}_{0}}{{x}_{0}-2}$,直線BN的方程y=$\frac{-{y}_{0}}{{x}_{0}-2}$(x-2),
$\left\{\begin{array}{l}{y=-\frac{{x}_{0}+2}{{y}_{0}}(x-{x}_{0})}\\{y=-\frac{{y}_{0}}{{x}_{0}-2}(x-2)}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{4{x}_{0}+2}{5}}\\{y=-\frac{4}{5}{y}_{0}}\end{array}\right.$,
過E做EH⊥x軸,△BHE∽△BDN,
則丨EH丨=$\frac{4{y}_{0}}{5}$,
則$\frac{丨EH丨}{丨ND丨}$=$\frac{4}{5}$,
∴:△BDE與△BDN的面積之比為4:5.

點評 本題考查橢圓的標準方程及簡單幾何性質,直線與橢圓的位置關系,直線的斜率公式,相似三角形的應用,考查數(shù)形結合思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.△ABC的內角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=$\sqrt{2}$,則C=( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(3,-$\sqrt{3}$),x∈[0,π].
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值;
(2)記f(x)=$\overrightarrow{a}$$•\overrightarrow$,求f(x)的最大值和最小值以及對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為$\frac{a^2}{3sinA}$.
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知點P在圓x2+y2=1上,點A的坐標為(-2,0),O為原點,則$\overrightarrow{AO}$•$\overrightarrow{AP}$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為( 。
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若雙曲線x2-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{3}$,則實數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.等差數(shù)列{an}的前n項和為Sn,a3=3,S4=10,則 $\sum_{k=1}^{n}$$\frac{1}{{S}_{k}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內依次抽取的16個零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
經(jīng)計算得 $\overline{x}$=$\frac{1}{16}$$\sum_{i=1}^{16}$xi=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})$≈0.212,$\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}$≈18.439,$\sum_{i=1}^{16}$(xi-$\overline{x}$)(i-8.5)=-2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相關系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。ㄈ魘r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。
(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
(ⅰ)從這一天抽檢的結果看,是否需對當天的生產(chǎn)過程進行檢查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的均值與標準差.(精確到0.01)
附:樣本(xi,yi)(i=1,2,…,n)的相關系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

同步練習冊答案