18.若x>0,則函數(shù)y=x+$\frac{1}{2x+1}$的最小值為$\sqrt{2}-\frac{1}{2}$.

分析 構(gòu)造思想,函數(shù)y=x+$\frac{1}{2x+1}$變形為y=(x+$\frac{1}{2}$)+($\frac{\frac{1}{2}}{x+\frac{1}{2}}$)$-\frac{1}{2}$,利用基本不等式的性質(zhì)即可得出.

解答 解:x>0,
函數(shù)y=x+$\frac{1}{2x+1}$=(x+$\frac{1}{2}$)+($\frac{\frac{1}{2}}{x+\frac{1}{2}}$)$-\frac{1}{2}$≥2$\sqrt{\frac{1}{2}}-\frac{1}{2}$=$\sqrt{2}-\frac{1}{2}$,當(dāng)且僅當(dāng)x=$\frac{\sqrt{2}-1}{2}$時取等號.
∴函數(shù)y=x+$\frac{1}{2x+1}$的最小值為$\sqrt{2}-\frac{1}{2}$.
故答案為:$\sqrt{2}-\frac{1}{2}$.

點評 本題考查了構(gòu)造思想,基本不等式的性質(zhì)的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式x(1-2x)≤0的解集為{x|x≤0或x≥$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人從甲地去乙地共走了500m,途經(jīng)一條寬為x m的河流,該人不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知該物品能被找到的概率為$\frac{24}{25}$,則河寬為( 。
A.80mB.20mC.40mD.50m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}是公差不為零的等差數(shù)列,a1=1且a1,a3,a9,成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列$\{{2^{a_n}}+{a_n}\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,$f(x)=x-\frac{3}{x}-2$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的所有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.滿足等式$|\begin{array}{l}{z}&{-i}\\{1-i}&{1+i}\end{array}|$=0的復(fù)數(shù)z為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\sqrt{3}$cos2ωx+sin(ωx+$\frac{π}{2}$)sinωx+a(其中ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標(biāo)為$\frac{π}{6}$.且f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值為0.
(1)求a,ω的值;
(2)用五點法作出它一個周期范圍內(nèi)的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義平面向量之間的一種運算“⊙“如下:對任意的向量$\overrightarrow{a}$=(m,n),$\overrightarrow$=(p,q)(其中m,n,p,q均為實數(shù)),$\overrightarrow{a}$⊙$\overrightarrow$=mq-np.在下列說法中:
(1)若向量與$\overrightarrow$共線,則$\overrightarrow{a}$⊙$\overrightarrow$=0;
(2)$\overrightarrow{a}$⊙$\overrightarrow$=$\overrightarrow$⊙$\overrightarrow{a}$;
(3)對任意;
(4)($\overrightarrow{a}$⊙$\overrightarrow$)2+($\overrightarrow{a}$•$\overrightarrow$)2=|$\overrightarrow{a}$|2|$\overrightarrow$|2(其中$\overrightarrow{a}$•$\overrightarrow$表示與$\overrightarrow$的數(shù)量積,|$\overrightarrow{a}$|表示向量的模).
正確的說法是(1)(3)(4).(寫出所有正確的說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.隨機抽取某中學(xué)甲乙兩班各6名學(xué)生,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)判斷哪個班的平均身高較高,并說明理由;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這6名學(xué)生中隨機抽取兩名學(xué)生,求至少有一名身高不低于175cm的學(xué)生被抽中的概率.

查看答案和解析>>

同步練習(xí)冊答案