【題目】為了提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關數(shù)據(jù)組成傳輸信息.設原信息為,傳輸信息為,其中, , 運算規(guī)則為: , , , .例如:原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息出錯的是( )
A. 01100 B. 11010 C. 10110 D. 11000
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點在軸上,且短軸的兩個頂點與其中一個焦點的連線構成斜邊為的等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓于兩點,試問:在坐標平面上是否存在一個定點,使得以線段為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體,過對角線作平面交棱于點,交棱于點,下列正確的是( )
A.平面分正方體所得兩部分的體積相等;
B.四邊形一定是平行四邊形;
C.平面與平面不可能垂直;
D.四邊形的面積有最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中)在點處的切線斜率為1.
(1)用表示;
(2)設,若對定義域內(nèi)的恒成立,求實數(shù)的取值范圍;
(3)在(2)的前提下,如果,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學、外語3門必選科目外,考生再從物理、歷史中選1門,從化學、生物、地理、政治中選2門作為選考科目.為了幫助學生合理選科,某中學將高一每個學生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達圖.甲同學的成績雷達圖如圖所示,下面敘述一定不正確的是( 。
A.甲的物理成績領先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學、歷史
D.對甲而言,物理、化學、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.
(1)求拋物線的標準方程;
(2)如果直線過拋物線的焦點,求的值;
(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當,且是上的增函數(shù),求實數(shù)的取值范圍;
(2)當,且對任意實數(shù),關于的方程總有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓中心在坐標原點,焦點在軸上,且過,直線與橢圓交于,兩點(,兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.
(Ⅰ)求橢圓的方程.
(Ⅱ)若以,兩點為直徑的圓過橢圓的右頂點,則直線是否經(jīng)過定點,若是,求出定點坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com