【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.

(1)求拋物線的標準方程;

(2)如果直線過拋物線的焦點,求的值;

(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.

【答案】(1);(2)∴;(3)

【解析】【試題分析】(1)借助題設與已知條件待定拋物線的參數(shù)即可;(2)依據(jù)題設條件,建立直線方程與拋物線方程聯(lián)立方程組,運用向量的坐標形式求解:(3)先假設存在,再運用所學知識分析探求。

(1)已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,

所以,

∴拋物線的標準方程為

(2)設 ,與聯(lián)立,得,

, ,∴ ,

(3)解:假設直線過定點,設 聯(lián)立,得

, ,∴,

,解得

過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓)的右焦點為,右頂點為,已知,其中 為原點, 為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某物流公司進行倉儲機器人升級換代期間,第一年有機器人臺,平均每臺機器人創(chuàng)收利潤萬元預測以后每年平均每臺機器人創(chuàng)收利潤都比上一年增加萬元,但該物流公司在用機器人數(shù)量每年都比上一年減少

(1)設第年平均每臺機器人創(chuàng)收利潤為萬元,在用機器人數(shù)量為臺,求,的表達式;

(2)依上述預測,第幾年該物流公司在用機器人創(chuàng)收的利潤最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點A.

(1)判斷直線l1l2是否垂直?請給出理由.

(2)求過點A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量(簡稱血酒含量,單位是毫克/100毫升),當,為酒后駕車,為醉酒駕車某市交通管理部門于某天晚上8點至11點設點進行一次攔查行動,共依法查出60名飲酒后違法駕駛機動車者,如圖為這60名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中的人數(shù)計入人數(shù)之內(nèi))

1求此次攔查中醉酒駕車的人數(shù);

2從違法駕車的60人中按酒后駕車和醉酒駕車利用分層抽樣抽取8人做樣本進行研究,再從抽取的8人中任取2人,求兩人中恰有1人醉酒駕車的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當實數(shù)p=e時,求曲線y=f(x)在點x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當p=1時,若直線y=mx+1與曲線y=f(x)沒有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,上頂點為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當時,求線段的長度;

)是否存在,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,在三棱錐, , 的中點.

(1)求證: ;

2)設平面平面, ,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于

查看答案和解析>>

同步練習冊答案