【題目】將函數(shù)y=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向右平移 個(gè)單位,那么所得圖象的一條對(duì)稱軸方程為( )
A.x=﹣
B.x=﹣
C.x=
D.x=
【答案】B
【解析】解:將函數(shù)y=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),可得函數(shù)y=sin(2x+ )的圖象,
再向右平移 個(gè)單位,那么所得圖象對(duì)應(yīng)的函數(shù)解析式為y=sin[2(x﹣ )+ ]=sin(2x﹣ )=﹣cos2x,
故最后所得函數(shù)的圖象的一條對(duì)稱軸方程為2x=kπ,即 x= ,k∈z,
結(jié)合所給的選項(xiàng)可得只有B滿足條件,
故選:B.
根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱性,可得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),f(0)=2,對(duì)任意x∈R,f(x)+f′(x)>1,則不等式exf(x)>ex+1的解集為( )
A.(0,+∞)
B.(﹣∞,0)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,我市某居民小區(qū)擬在邊長(zhǎng)為1百米的正方形地塊ABCD上劃出一個(gè)三角形地塊APQ種植草坪,兩個(gè)三角形地塊PAB與QAD種植花卉,一個(gè)三角形地塊CPQ設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)P在邊BC上,點(diǎn)Q在邊CD上,記∠PAB=a.
(1)當(dāng)∠PAQ= 時(shí),求花卉種植面積S關(guān)于a的函數(shù)表達(dá)式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請(qǐng)?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點(diǎn)距地面2米,最高點(diǎn)距地面18米,P是摩天輪輪周上一定點(diǎn),從P在最低點(diǎn)時(shí)開始計(jì)時(shí),則14分鐘后P點(diǎn)距地面的高度是米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4sin2( + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化簡(jiǎn)f(x);
(2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間 上是增函數(shù),求ω的取值范圍;
(3)若函數(shù)g(x)= 在 的最大值為2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: =1,點(diǎn)M與曲線C的焦點(diǎn)不重合,若點(diǎn)M關(guān)于曲線C的兩個(gè)焦點(diǎn)的對(duì)稱點(diǎn)分別為A,B,M,N是坐標(biāo)平面內(nèi)的兩點(diǎn),且線段MN的中點(diǎn)P恰好在雙曲線C上,則|AN﹣BN|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)M(1,1),且與x軸,y軸的正半軸分別相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).求:
(1)當(dāng)|OA|十|OB|取得最小值時(shí),直線l的方程;
(2)當(dāng)|MA|2+|MB|2取得最小值時(shí),直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)f(x)與g(x)的圖象相同的是( )
A.f(x)=x,g(x)=( )2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓E:(x+ )2+y2=16,點(diǎn)F( ,0),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(2)設(shè)直線l與(1)中軌跡Γ相交于A,B兩點(diǎn),直線AO,l,OB的斜率分別為k1 , k,k2(其中k>0),若k1 , k,k2恰好構(gòu)成公比不為1的等比數(shù)列,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com