【題目】已知中心在坐標原點O,焦點在x軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設(shè)不過原點O的直線l與該橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,若的面積為,求直線l與y軸交點的坐標.
【答案】(1);(2)
【解析】
(1)設(shè)出橢圓的方程,將已知點代入橢圓的方程及利用橢圓的離心率公式得到關(guān)于橢圓的三個參數(shù)的等式,解方程組求出的值,代入橢圓方程即可.(2)設(shè)出直線的方程將直線方程與橢圓方程聯(lián)立,消去得到關(guān)于的二次方程,利用韋達定理得到關(guān)于兩個交點的坐標的關(guān)系,將直線的斜率用坐標表示據(jù)已知三個斜率成等比數(shù)列,列出方程,將韋達定理得到的等式代入,求出的值,利用判別式大于 得到的范圍,將面積表示出來,得到的等式,解出,即可得到直線l與y軸交點的坐標.
(1)設(shè)橢圓方程為:,
橢圓的離心率為,過點,
,解得,
橢圓的方程為:.
(2)由題意知,直線的斜率存在且不為0,
設(shè)直線的方程為:,
,消得,,
且,
,
直線的斜率依次成等比數(shù)列,
,,
又,,即,
直線的斜率存在,且,得且.
設(shè)為點到直線的距離,
或,
直線與軸交點的坐標為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖a是某市參加2012年高考的學(xué)生身高條形統(tǒng)計圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為、、…、[如表示身高(單位:cm)在內(nèi)的學(xué)生人數(shù)].圖b是統(tǒng)計圖a中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點,當(dāng)平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線C:的焦點為F,過F的直線交拋物線C于A,B兩點.
(1)求線段AF的中點M的軌跡方程;
(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關(guān)系分別為,,(其中都為常數(shù)),函數(shù)對應(yīng)的曲線、如圖所示.
(1)求函數(shù)與的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且以橢圓的兩焦點和短軸的一個端點為頂點的三角形的周長恰為.
(1)求橢圓的標準方程;
(2)動直線與拋橢圓相交于,兩點,問:在軸上是否存在定點(其中,使得向量與向量共線(其中為坐標原點)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市食品藥品監(jiān)督管理局開展2020年春季快遞餐飲安全檢查,對本市的8個快遞配餐點進行了原料采購加工標準和衛(wèi)生標準的檢查和評分,其評分情況如表所示:
快遞配餐點編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購加工標準評分 | 82 | 75 | 70 | 66 | 83 | 93 | 95 | 100 |
衛(wèi)生標準評分 | 81 | 79 | 77 | 75 | 82 | 83 | 84 | 87 |
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個被檢查點中任意抽取兩個組成一組,若兩個點的原料采購加工標準和衛(wèi)生標準的評分均超過80分,則組成“快遞標兵配餐點”,求該組被評為“快遞標兵配餐點”的概率.
參考公式:,;參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有個小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若=4,則甲有必贏的策略 B. 若=6,則乙有必贏的策略
C. 若=9,則甲有必贏的策略 D. 若=11,則乙有必贏的策略
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com