【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費點處記錄了大年初三上午9:2010:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如圖所示,其中時間段9:20940記作區(qū)間,9:4010:00記作,10:0010:20記作10:2010:40記作.比方:1004分,記作時刻64.

1)估計這600輛車在9:2010:40時間段內(nèi)通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,記9:2010:00之間通過的車輛數(shù),求的分布列與數(shù)學期望;

3)由大數(shù)據(jù)分析可知,車輛在春節(jié)期間每天通過該收費點的時刻服從正態(tài)分布,其中可用這600輛車在9:2010:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:4610:40之間通過的車輛數(shù)(結果保留到整數(shù)).

參考數(shù)據(jù):若,則,,.

【答案】(1)1004分;(2)詳見解析;(3)819輛.

【解析】

1)用每組中點值乘以頻率,然后相加,得到平均值.2)先用分層抽樣的知識計算出量車中位于的車輛數(shù),然后利用超幾何分布的知識計算出分布列,并求得數(shù)學期望.3)由(1)可知,計算出方差和標準差,利用正態(tài)分布的對稱性,計算出在9:4610:40這一時間段內(nèi)通過的車輛的概率,乘以得到所求車輛數(shù).

解:(1)這600輛車在9:2010:40時間段內(nèi)通過該收費點的時刻的平均值為,即1004分。

2)結合頻率分布直方圖和分層抽樣的方法可知:抽取的10輛車中,在10:00前通過的車輛數(shù)就是位于時間分組中在這一區(qū)間內(nèi)的車輛數(shù),即,所以的可能取值為01,2,3,4。

所以,,,,

所以的分布列為

0

1

2

3

4

所以.

3)由(1)可得,

,

所以.

估計在9:4610:40這一時間段內(nèi)通過的車輛數(shù),也就是通過的車輛數(shù),

,得

所以,估計在9:4610:40這一時間段內(nèi)通過的車輛數(shù)為(輛).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O經(jīng)過橢圓C=1ab0)的兩個焦點以及兩個頂點,且點(b)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點,且|MN|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在以上(含的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

(1)的值,并計算所抽取樣本的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)填寫下面的列聯(lián)表,能否有超過的把握認為獲獎與學生的文理科有關?

文科生

理科生

合計

獲獎

不獲獎

合計

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】40名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

1)求頻率分布直方圖中的值;

2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù) (保留小數(shù)點后兩位數(shù)字)和眾數(shù);

3)從成績在的學生中任選3人,求這3人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an2+4an8Sn0,則an_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過橢圓Eab0)的左焦點F1x軸的垂線交橢圓EP,Q兩點,點A,B是橢圓E的頂點,且ABOP,F2為右焦點,△PF2Q的周長為8

1)求橢圓E的方程;

2)過點F1作直線l與橢圓E交于CD兩點,若△OCD的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)過作直線,交(1)中軌跡兩點,若中點的縱坐標為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若,證明:;

(2)已知,若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結果得如下圖頻率分布直方圖:

I)求這500件產(chǎn)品質(zhì)量指標值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表);

II)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

i)利用該正態(tài)分布,求;

ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結果,求.

附:

,

查看答案和解析>>

同步練習冊答案