【題目】已知圓,一動(dòng)圓與直線相切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過作直線,交(1)中軌跡于兩點(diǎn),若中點(diǎn)的縱坐標(biāo)為,求直線的方程.
【答案】(1);(2).
【解析】
(1)利用直接法,求動(dòng)圓圓心P的軌跡T的方程;
(2)法一:由(1)得拋物線E的焦點(diǎn)C(1,0)設(shè)A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),利用點(diǎn)差法,求出線段AB中點(diǎn)的縱坐標(biāo),得到直線的斜率,求出直線方程.
法二:設(shè)直線l的方程為x=my+1,聯(lián)立直線與拋物線方程,設(shè)A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),通過韋達(dá)定理,求出m即可.
(1)設(shè)P(x,y),則由題意,|PC|﹣(x),
∴x+1,
化簡可得動(dòng)圓圓心P的軌跡E的方程為y2=4x;
(2)法一:由(1)得拋物線E的方程為y2=4x,焦點(diǎn)C(1,0)
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),
則
兩式相減.整理得
∵線段AB中點(diǎn)的縱坐標(biāo)為﹣1
∴直線l的斜率
直線l的方程為y﹣0=﹣2(x﹣1)即2x+y﹣2=0.
法二:由(1)得拋物線E的方程為y2=4x,焦點(diǎn)C(1,0)
設(shè)直線l的方程為x=my+1
由消去x,得y2﹣4my﹣4=0
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),
∵線段AB中點(diǎn)的縱坐標(biāo)為﹣1
∴
解得
直線l的方程為即2x+y﹣2=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對網(wǎng)購平臺(tái)的商品和服務(wù)的評價(jià)系統(tǒng),從該系統(tǒng)中隨機(jī)選出100名交易者,并對其交易評價(jià)進(jìn)行了統(tǒng)計(jì),網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的有40人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對服務(wù)滿意與對商品滿意之間有關(guān)”?
對服務(wù)滿意 | 對服務(wù)不滿意 | 合計(jì) | |
對商品滿意 | |||
對商品不滿意 | |||
合計(jì) |
(2)若對商品和服務(wù)都不滿意者的集合為.已知中有2名男性,現(xiàn)從中任取2人調(diào)查其意見.求取到的2人恰好是一男一女的概率.
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()若,求曲線在點(diǎn)處的切線方程.
()求函數(shù)的單調(diào)區(qū)間.
()設(shè)函數(shù),若對于任意,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),試求在處的切線方程;
(2)當(dāng)時(shí),試求的單調(diào)區(qū)間;
(3)若在內(nèi)有極值,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,直線:.
(1)求直線所過定點(diǎn)的坐標(biāo);
(2)求直線被圓所截得的弦長最短時(shí)的值;
(3)已知點(diǎn),在直線(為圓心)上存在定點(diǎn)(異于點(diǎn)),滿足:對于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo)及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平面,,分別是,的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)若,,求直線與平面所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com