【題目】如圖所示,已知平面,分別是,的中點,.

1)求證:平面

2)求證:平面平面;

3)若,,求直線與平面所成的角.

【答案】1)證明見解析(2)證明見解析(3

【解析】

1)根據(jù)中位線定理,可得,即可由線面平行判定定理證明平面;

2)根據(jù)題意可得,而又因為,所以平面,即可由平面與平面垂直的判定定理證明平面平面;

3)由題意可知為直線與平面所成的角,根據(jù)線段關(guān)系求得,即可求得直線與平面所成的角大小.

1)因為,分別是,的中點,

所以.

平面平面,

所以平面.

2)因為平面,平面,

所以.

,

所以平面.

平面,

所以平面平面.

3)因為平面,所以為直線與平面所成的角.

在直角,,,

所以.

所以.

故直線與平面所成的角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)過作直線,交(1)中軌跡兩點,若中點的縱坐標(biāo)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長為 .

(1)求橢圓 的方程;

(2)過點 的直線 交橢圓于 , 兩個不同的點,且 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知橢圓的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是

(1)求橢圓的方程;

(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當(dāng)時,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)當(dāng)時,判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)若射線分別交兩點, 求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?

(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時,若存在正實數(shù)滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線和圓,是直線上一點,過點作圓的兩條切線,切點分別為.

1)若,求點坐標(biāo);

2)若圓上存在點,使得,求點的橫坐標(biāo)的取值范圍;

3)設(shè)線段的中點為,軸的交點為,求線段長的最大值.

查看答案和解析>>

同步練習(xí)冊答案