【題目】已知函數(shù) 為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明.
【答案】
(1)解:∵函數(shù)f(x)是奇函數(shù),且f(x)的定義域?yàn)镽;
∴ ;
∴a=﹣1;
(2)f(x)= ;
函數(shù)f(x)在定義域R上單調(diào)遞增.
理由:設(shè)x1<x2,則:
;
∵x1<x2;
∴ ;
∴ ;
∴f(x1)<f(x2);
∴函數(shù)f(x)在定義域R上單調(diào)遞增.
【解析】(1)f(x)的定義域?yàn)镽,且f(x)為奇函數(shù),所以一定有f(0)=0,代入可得a=-1,(2)根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判斷,設(shè)x1<x2,對f(x1),f(x2)進(jìn)行作差即可得出函數(shù)f(x)在定義域R上單調(diào)遞增.
【考點(diǎn)精析】關(guān)于本題考查的奇偶性與單調(diào)性的綜合,需要了解奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxsin x. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將T表示為X的函數(shù);
(Ⅱ)根據(jù)直方圖估計利潤T不少于57000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2+ax+b)ex , 當(dāng)b<1時,函數(shù)f(x)在(﹣∞,﹣2),(1,+∞)上均為增函數(shù),則 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)當(dāng)a=7時,求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥3的解集是R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x﹣1),且當(dāng)x∈(0,2)時,f(x)=2x , 則f(log280)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時,不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)證明:f(x)在(﹣1,+∞)上為增函數(shù);
(3)證明:方程f(x)=0沒有負(fù)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(a2﹣3a+3)ax是指數(shù)函數(shù),
(1)求f(x)的表達(dá)式;
(2)判斷F(x)=f(x)﹣f(﹣x)的奇偶性,并加以證明
(3)解不等式:loga(1﹣x)>loga(x+2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com