【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設(shè)點P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標(biāo);
(3)當(dāng)x∈[1,2]時,不等式 恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:由f(1)=1,f(﹣2)=4.

解得:


(2)由(1)

所以 ,

令x+1=t,t<0,

=

因為x<﹣1,所以t<0,

所以,當(dāng) ,

所以 ,

即AP的最小值是 ,此時

點P的坐標(biāo)是


(3)問題即為 對x∈[1,2]恒成立,

也就是 對x∈[1,2]恒成立,

要使問題有意義,0<m<1或m>2.

法一:在0<m<1或m>2下,問題化為 對x∈[1,2]恒成立,

對x∈[1,2]恒成立,mx﹣m≤x2≤mx+m對x∈[1,2]恒成立,

①當(dāng)x=1時, 或m>2,

②當(dāng)x≠1時, 對x∈(1,2]恒成立,

對于 對x∈(1,2]恒成立,等價于

令t=x+1,x∈(1,2],則x=t﹣1,t∈(2,3], ,t∈(2,3]遞增,

, ,結(jié)合0<m<1或m>2,

∴m>2

對于 對x∈(1,2]恒成立,等價于

令t=x﹣1,x∈(1,2],則x=t+1,t∈(0,1],

,t∈(0,1]遞減,

,

∴m≤4,

∴0<m<1或2<m≤4,

綜上:2<m≤4

法二:問題即為 對x∈[1,2]恒成立,

也就是 對x∈[1,2]恒成立,

要使問題有意義,0<m<1或m>2.

故問題轉(zhuǎn)化為x|x﹣m|≤m對x∈[1,2]恒成立,

令g(x)=x|x﹣m|

①若0<m<1時,由于x∈[1,2],故g(x)=x(x﹣m)=x2﹣mx,g(x)在x∈[1,2]時單調(diào)遞增,

依題意g(2)≤m, ,舍去;

②若m>2,由于x∈[1,2],故 ,

考慮到 ,再分兩種情形:

(。 ,即2<m≤4,g(x)的最大值是 ,

依題意 ,即m≤4,

∴2<m≤4;

(ⅱ) ,即m>4,g(x)在x∈[1,2]時單調(diào)遞增,

故g(2)≤m,

∴2(m﹣2)≤m,

∴m≤4,舍去.

綜上可得,2<m≤4


【解析】(1)由f(1)=1,f(﹣2)=4.代入解析式,即可求出a,b的值,(2)設(shè)P點坐標(biāo)為(x,y),由兩點間的距離公式表示出 | A P | 2=( x 1 ) 2 + 4 ( ) 2 ,利用換元令令x+1=t,t<0,即可求出AP的最小值,點P的坐標(biāo),(3)法一:由題目條件對不等式化簡得,對m討論,將恒成立問題化為最值問題,法二:問題化為對x∈[1,2]恒成立,即對x∈[1,2]恒成立,要使問題有意義,0<m<1或m>2.問題轉(zhuǎn)化為x|x﹣m|≤m對x∈[1,2]恒成立,令g(x)=x|x﹣m|,結(jié)合函數(shù)的性質(zhì)可求得m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長與底面的邊長均相等,M為SA的中點,則直線BM與SC所成的角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣x﹣1)ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若方程a( +1)+ex=ex在(0,1)內(nèi)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當(dāng)x∈(0,2]時,f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比為q的等比數(shù)列{an}的前6項和S6=21,且4a1 ,a2成等差數(shù)列.
(1)求an;
(2)設(shè){bn}是首項為2,公差為﹣a1的等差數(shù)列,記{bn}前n項和為Tn , 求Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知總體的各個體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,平均數(shù)為10.若要使該總體的方差最小,則a、b的取值分別是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記函數(shù)f(x)=lg(1﹣ax2)的定義域、值域分別為集合A,B.
(1)當(dāng)a=1時,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AD的延長線交BC的延長線于點E.
求證:△ABD∽△AEB.

查看答案和解析>>

同步練習(xí)冊答案