13.命題“?x0>0,x02-4x0+1<0”的否定是?x>0,x2-4x+1≥0.

分析 根據(jù)已知中的原命題,結(jié)合特稱命題否定的定義,可得答案.

解答 解:命題“?x0>0,x02-4x0+1<0”的否定是“?x>0,x2-4x+1≥0”,
故答案為:?x>0,x2-4x+1≥0

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是命題的否定,特稱命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.拋物線y2=ax(a>0)與直線x=1圍成的封閉圖形的面積為$\frac{4}{3}$,則二項(xiàng)式(x+$\frac{a}{x}$)20展開(kāi)式中含x-16項(xiàng)的系數(shù)是190.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若該市有110萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說(shuō)明理由;
(Ⅲ)若該市政府希望使80%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.把函數(shù)y=sin(x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象.
(Ⅰ)寫(xiě)出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0,$\frac{5π}{6}$]時(shí),關(guān)于x的方程f(x)-m=0有兩個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為4,則P到另一焦點(diǎn)距離為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)p:實(shí)數(shù)x滿足ax-(1+a2)x2>0(a>0);q:實(shí)數(shù)x滿足2x2-x-1<0.若(¬p)∧q為真,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,又$\overrightarrow{OC}=2\overrightarrow{a}+\overrightarrow$,$\overrightarrow{OD}=\overrightarrow{a}+3\overrightarrow$.求|$\overrightarrow{CD}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個(gè)對(duì)稱中心到最近的一條對(duì)稱軸的距離為$\frac{π}{4}$,且在x=$\frac{π}{12}$處取得最大值.
(1)求λ的值.
(2)設(shè)$g(x)=af(x)+cos(4x-\frac{π}{3})$在區(qū)間$(\frac{π}{4},\frac{π}{3})$上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)$.
( I)求函數(shù)f(x)對(duì)稱軸方程和單調(diào)遞增區(qū)間;
( II)對(duì)任意$x∈[-\frac{π}{6},\frac{π}{6}]$,f(x)-m≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案